2.9.2 Problems

P10 Try small prime numbers first.

p p2 + 2
2 |6

3 11

5 |27

7 |51

11 | 123

Among the primes in this table, only the prime 3 has the property that
(p? + 2) is also a prime. We try to prove that no other primes has this
property. The only thing we have learnt about primes in this section is
Theorem 20. We have checked the primes 2 and 3 in the table, so we can
assume p > 5, and we only have to consider the two cases of congruence
mod 6 in the theorem.

Case 1: p =1 (mod 6). Raising both sides to 2 gives

p?=1 (mod 6)
Adding 2 to both sides gives
p>+2=3 (mod 6)

so p? + 2 must be divisible by 3, and hence it is not a prime.

Case 2: p=5 (mod 6). Exactly the same argument shows that (p? + 2) is
again divisible by 3, so it is not a prime.

Hence 3 is the only prime such that (p? + 2) is also prime.

P11 Just as in the case treated in the text, we can write

The alternating digit sum is

k
Z(—l)jaj:ao—al—l—ag—...

Jj=0

If j is even, then '
aj =a;-10/  (mod 11)

and if n is odd, we have
—aj=a;-10’ (mod 11)

Adding these congruences for all j shows that n is congruent to its alternat-
ing digit sum, mod 11.
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P12 We use Theorem 20.
Case 1: p gives remainder 1 when divided by 6.
In this case we have

p==6g+1

where ¢ is the quotient on division by 6. This implies
P2 —1=36¢>+12¢ = 12¢(3¢ + 1)

If ¢ is even, then clearly 12q is divisible by 24, so (p? — 1) is also divisible by
24. If q is odd, then (3¢ + 1) is even, so 12(3¢ + 1) is divisible by 24. Hence
(p? — 1) is divisible by 24 also in this case.
Case 2: p gives remainder 5 when divided by 6.
Now we can write

p==6g+5

and use a similar argument as in Case 1.
P13 Since we always have the congruence

38x =4x (mod 17)
the Problem is the same as finding a solution to

4dr =5 (mod 17)
The positive integers congruent to 5 mod 17 are:
5,22,39,56. ..

Since 56 = 4 - 14, we can take z = 14.

P14 Suppose there exists such a positive integer n. Let

m:nQ—n

The condition in the problem is the same as saying that every prime number
p divides m. This can happen only if m = 0, that is, only if n = 1. Hence
n =1 is the only positive integer with the given property.
P15 We try to find a pattern.
1 =
1+3 =
1+3+5 = 9
1+3+54+7 = 16
1+3+5+74+9 = 25
It seems like the sum of the first n odd numbers is equal to n?, and we guess

that this is always true. The kth odd number is (2k — 1), so our guess says
that

n

D 2k —1)=n"

k=1
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We could prove it by induction, as before, but here we give an alternative
solution, using Theorem 22, which we have already proved.
We compute, using basic properties of summation:

SE-1) = 2 Y k-3

k=1 k=1 k=1

o Mn+1)
2

= n2—|—n—n

= n2

which proves our guess.
P16 We let S(n) be the statement

“F3,, is even”

Base step: Since F3 = 2, the statement S(1) is true.
Induction step: We assume that S(n) is true, in other words that F3,, is
even. We have

F3np1 = F3p+ F3p1
F3p49 = Fspq1 + F3, = 2F3, + F3,1
F3n43 = F3pyo+ F3u01 = 3F3, + 2F3, 1

(The second line is obtained using the definition of F3,y1, and the last
equality is obtained by adding the first two equations.) Beacuse F3,, is even,
and 2F3, 1 is even, we can conclude that

3F3n + 2F3n—1

also is even. In other words, S(n + 1) is true. This completes the induction
proof.

P17 We let S(n) be the formula to be proved.

Base step: Since F; =1, F, =1, and F3 = 2, the statement S(1) is true.
Induction step: We assume that S(n) is true, in other words that

FnFnio + (_1)11 = Fngl
We add [(—1)"*! + F,,11F,,12] to both sides. This gives
FoFyio+ FopiFyio = F3_|_1 + Foi1 P + (—1)n+1

(Here we have used that (—1)" + (—1)"*! =0.)
This equation can be rewritten as

(Fn + Fn—l—l) : Fn+2 = Fn+1(Fn+1 + Fn+2) + (_1)n+1

48



and this implies
Fiio = FoFos + (=)™

n

which means that we have proved the statement S(n + 1). This completes
the induction proof.
P18 By Fermat’s theorem, we have

a’? =a (mod p)

and
=0 (mod p)

Adding these two congruences gives

a? + ¥ =a+b (mod p)
But Fermat’s theorem also says

(a+bP=a+b (mod p)

which proves the desired congruence.
P19 We let
m=1"+2P+ ..+ (p—-1)PF

By Fermat’s last theorem

= 17 (mod p)
= 27 (mod p)
= 3” (mod p)

and so on. Adding all these congruences shows that
142+...4(p—1)=m (mod p)
By Theorem 22, we know that

1
1+2+...+(p—1):p—2 p

p—1

5— is an integer, so the above equation shows

Since p is odd, the number
that the sum

1+2+...+(p—1)

is a congruent to 0 mod p. Hence m is also congruent to 0 mod p.
P20 We compute all values of f and collect them in a table:

z | f(x)
00
14
2|3
3|2
411
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From the table, it is clear that f is injective and surjective. Hence it is also
bijective.
P21 We compute all values of g and collect them in a table:

z | fx)
0

0~ O TR W O
O 0RO O N 00

916
Now it is clear that g is NOT injective (for example, g(0) = ¢(5)). It is
also clear that g is NOT surjective (for example, 1 is not in the image).
Therefore, g is also not bijective.
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