
2.9.2 Problems

P10 Try small prime numbers first.
p p2 + 2

2 6
3 11
5 27
7 51
11 123

Among the primes in this table, only the prime 3 has the property that
(p2 + 2) is also a prime. We try to prove that no other primes has this
property. The only thing we have learnt about primes in this section is
Theorem 20. We have checked the primes 2 and 3 in the table, so we can
assume p ≥ 5, and we only have to consider the two cases of congruence
mod 6 in the theorem.
Case 1: p ≡ 1 (mod 6). Raising both sides to 2 gives

p2
≡ 1 (mod 6)

Adding 2 to both sides gives

p2 + 2 ≡ 3 (mod 6)

so p2 + 2 must be divisible by 3, and hence it is not a prime.
Case 2: p ≡ 5 (mod 6). Exactly the same argument shows that (p2 + 2) is
again divisible by 3, so it is not a prime.
Hence 3 is the only prime such that (p2 + 2) is also prime.
P11 Just as in the case treated in the text, we can write

n =

k∑

j=0

aj · 10
j

The alternating digit sum is

k∑

j=0

(−1)jaj = a0 − a1 + a2 − . . .

If j is even, then
aj ≡ aj · 10

j (mod 11)

and if n is odd, we have

−aj ≡ aj · 10
j (mod 11)

Adding these congruences for all j shows that n is congruent to its alternat-
ing digit sum, mod 11.
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P12 We use Theorem 20.
Case 1: p gives remainder 1 when divided by 6.
In this case we have

p = 6q + 1

where q is the quotient on division by 6. This implies

p2
− 1 = 36q2 + 12q = 12q(3q + 1)

If q is even, then clearly 12q is divisible by 24, so (p2 − 1) is also divisible by
24. If q is odd, then (3q + 1) is even, so 12(3q + 1) is divisible by 24. Hence
(p2 − 1) is divisible by 24 also in this case.
Case 2: p gives remainder 5 when divided by 6.
Now we can write

p = 6q + 5

and use a similar argument as in Case 1.
P13 Since we always have the congruence

38x ≡ 4x (mod 17)

the Problem is the same as finding a solution to

4x ≡ 5 (mod 17)

The positive integers congruent to 5 mod 17 are:

5, 22, 39, 56 . . .

Since 56 = 4 · 14, we can take x = 14.
P14 Suppose there exists such a positive integer n. Let

m = n2
− n

The condition in the problem is the same as saying that every prime number
p divides m. This can happen only if m = 0, that is, only if n = 1. Hence
n = 1 is the only positive integer with the given property.
P15 We try to find a pattern.

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

It seems like the sum of the first n odd numbers is equal to n2, and we guess
that this is always true. The kth odd number is (2k − 1), so our guess says
that

n∑

k=1

(2k − 1) = n2
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We could prove it by induction, as before, but here we give an alternative
solution, using Theorem 22, which we have already proved.
We compute, using basic properties of summation:

n∑

k=1

(2k − 1) = 2 ·

n∑

k=1

k −

n∑

k=1

1

= 2 ·
n(n + 1)

2
− n

= n2 + n − n

= n2

which proves our guess.
P16 We let S(n) be the statement

“F3n is even”

Base step: Since F3 = 2, the statement S(1) is true.
Induction step: We assume that S(n) is true, in other words that F3n is
even. We have

F3n+1 = F3n + F3n−1

F3n+2 = F3n+1 + F3n = 2F3n + F3n−1

F3n+3 = F3n+2 + F3n+1 = 3F3n + 2F3n−1

(The second line is obtained using the definition of F3n+1, and the last
equality is obtained by adding the first two equations.) Beacuse F3n is even,
and 2F3n−1 is even, we can conclude that

3F3n + 2F3n−1

also is even. In other words, S(n + 1) is true. This completes the induction
proof.
P17 We let S(n) be the formula to be proved.
Base step: Since F1 = 1, F2 = 1, and F3 = 2, the statement S(1) is true.
Induction step: We assume that S(n) is true, in other words that

FnFn+2 + (−1)n = F 2
n+1

We add [(−1)n+1 + Fn+1Fn+2] to both sides. This gives

FnFn+2 + Fn+1Fn+2 = F 2
n+1 + Fn+1Fn+2 + (−1)n+1

(Here we have used that (−1)n + (−1)n+1 = 0.)
This equation can be rewritten as

(Fn + Fn+1) · Fn+2 = Fn+1(Fn+1 + Fn+2) + (−1)n+1
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and this implies
F 2

n+2 = Fn+1Fn+3 + (−1)n+1

which means that we have proved the statement S(n + 1). This completes
the induction proof.
P18 By Fermat’s theorem, we have

ap
≡ a (mod p)

and
bp

≡ b (mod p)

Adding these two congruences gives

ap + bp
≡ a + b (mod p)

But Fermat’s theorem also says

(a + b)p ≡ a + b (mod p)

which proves the desired congruence.
P19 We let

m = 1p + 2p + . . . + (p − 1)p

By Fermat’s last theorem

1 ≡ 1p (mod p)

2 ≡ 2p (mod p)

3 ≡ 3p (mod p)

and so on. Adding all these congruences shows that

1 + 2 + . . . + (p − 1) ≡ m (mod p)

By Theorem 22, we know that

1 + 2 + . . . + (p − 1) =
p − 1

2
· p

Since p is odd, the number p−1

2
is an integer, so the above equation shows

that the sum
1 + 2 + . . . + (p − 1)

is a congruent to 0 mod p. Hence m is also congruent to 0 mod p.
P20 We compute all values of f and collect them in a table:
x f(x)

0 0
1 4
2 3
3 2
4 1
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From the table, it is clear that f is injective and surjective. Hence it is also
bijective.
P21 We compute all values of g and collect them in a table:
x f(x)

0 0
1 4
2 8
3 2
4 6
5 0
6 4
7 8
8 2
9 6

Now it is clear that g is NOT injective (for example, g(0) = g(5)). It is
also clear that g is NOT surjective (for example, 1 is not in the image).
Therefore, g is also not bijective.
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