
2.9 Answers and solutions

2.9.1 Exercises

E155 False. E156 False. E157 True. E158 True. E159 False. E160

False. E161 True. (If n is even, then n = 2k for some k, and if n is odd,
then n = 2k − 1 for some k.) E162 False. (It should be n3 ≡ 2 (mod 5).)
E163 True. (Since 8|16 and 16|(a − b), we can conclude that 8|(a − b).)
E164 False. (For example, 1 is congruent to 6 mod 5, but not mod 10.)
E165 True. (Multiply both sides by (-1).) E166 True. (Add 4 to both
sides.) E167 False. (You cannot raise one side to 2 and the other side to 3.)
E168 False. (You cannot cancel 2 from both sides, because 2 is not coprime
to 4.) E169 True. (Because 3 is coprime to 7.) E170 0 and 1. E171 0, 1
and 4. E172 Yes, because GCD(2, 3) divides 7. One solution is x = 2, but
there are many other solutions also. E173 No, because GCD(8, 12) does
not divide 6. E174 No, because GCD(9, 6) does not divide 2. E175 Yes,
because GCD(3, 8) divides 5. One solution is x = 7, but there are many
other solutions also. E176 Yes, by the Chinese Remainder Theorem. One
solution is 17. E177 Yes, by the Chinese Remainder Theorem. One solution
is 71. (The positive integers congruent to 8 mod 9 are the numbers 8, 17,
26, 35, 44 and so on. Check each number in this list until you find one that
gives remainder 1 when divided by 10.) E178 Here we cannot apply the
Chinese Remainder Theorem, because 4 and 6 are not coprime. If such a
number existed it would have to be both even and odd, which is of course
impossible. So the answer is no.
E179 Base step: S(1) is the statement 1 ≡ 8 (mod 7), which is true.
Induction step: We assume that

23n ≡ 1 (mod 7)

Multiply both sides by 23. This gives

23(n+1) ≡ 8 (mod 7)

and since 8 ≡ 1 (mod 7), this completes the induction step.
E180 Base step: S(1) is the statement 3 ≡ 3 (mod 6), which is true.
Induction step: We assume that

3n ≡ 3 (mod 6)

Multiply both sides by 3. We get

3n+1 ≡ 9 (mod 6)

and since 9 ≡ 3 (mod 6), we have proved the statement S(n + 1).
E181 8. E182 60. E183 4. E184 12. E185 24. E186 18.
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E187 Euler’s theorem (with n = 77 and a = 2) says that

260 ≡ 1 (mod 77)

Multiply both sides by 4.
E188 Euler’s theorem (with n = 39 and a = 8) says that

824 ≡ 1 (mod 39)

Multiply both sides by 8.
E189 Euler’s theorem (with n = 19 and a = 5) says that

518 ≡ 1 (mod 19)

Multiply both sides by 125. This gives

521 ≡ 125 (mod 19)

in other words, (521 − 125) is a multiple of 19.
E190 Fermat’s little theorem says

ap ≡ a (mod p)

Raising both sides to p gives

ap
2

≡ ap (mod p)

and combining these two congruences shows the desired result.
E191 Euler’s theorem (with n = 11 and a = 6) says that

610 ≡ 1 (mod 11)

Raise both sides to 9 to get

690 ≡ 1 (mod 11)

Since 1 ≡ 12 (mod 11), we also have

690 ≡ 12 (mod 11)

Since 6 is coprime to 11, we may cancel 6 on both sides. This gives

689 ≡ 2 (mod 11)

so the answer is 2.
E192 The last digit is the same thing as the remainder when divided by 10.
Euler’s theorem (with n = 10 and a = 7) says that

74 ≡ 1 (mod 10)
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Raise both sides to 100. We get

7400 ≡ 1 (mod 10)

Multiply both sides by 7. We see that the answer is 7.
E193 Euler’s theorem (with n = 8 and a = 5) says that

54 ≡ 1 (mod 8)

Raise both sides to 14. This gives

556 ≡ 1 (mod 8)

Now multiply both sides by 3. We get

3 · 556 ≡ 3 (mod 8)

so the answer is 3.
E194 9. E195 0. E196 2. E197 1. E198 10. E199 2. E200 4. E201 11.
E202 1. E203 1. E204 0. E205 2. E206 1. E207 x = 4. E208 x = 4.
E209 x = 4 and x = 5. E210 x = 0, x = 3 and x = 6. E211 x = 1 and
x = 4. E212 x = 0. E213 No solutions. E214 x = 0 and x = 4. E215

x = 3. E216 6. E217 10. E218 2.
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