
2.5 Congruences

For this section, we think of m as a fixed positive integer.

Definition 15. We say that a is congruent to b modulo m, and we write

a ≡ b (mod m)

if m divides (a − b).

IMPORTANT NOTE: All the following statements are equivalent:

• a ≡ b (mod m)

• a and b give the same remainder when divided by m

• a can be written as b + km for some integer k

• a can be reached from b (and vice versa) by jumping only jumps of
length m

• (a − b) is an element of the ideal 〈m〉

Switching between these different formulations will help you solve most prob-
lems concerning congruence questions.

Theorem 12. The relation a ≡ b (mod m) is an equivalence relation on Z.

Proof. This should be obvious from the 2nd point above.

Congruence behave in many ways just like equality. This is very useful in
arguments with congruences. To be precise, the following rules hold. (The
proofs of these rules is not the important thing, the important thing is that
you can use the rules in calculations and arguments.)

Theorem 13 (Rules for congruences). If we have two congruences mod
m, we may add them, multiply them, and subtract them. In other words,
suppose that

a ≡ b (mod m) and c ≡ d (mod m)

Then the following holds:

a + c ≡ b + d (mod m)

ac ≡ bd (mod m)

a − c ≡ b − d (mod m)

Proof. Our hypothesis is that m divides (a − b) and m also divides (c − d).
Then m must divide (a − b) + (c − d) = (a + c) − (b + d), which gives
the first congruence. Similar easy arguments prove the second and third
congruence.
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Theorem 14 (More rules for congruences). We may multiply both sides of
a congruence by an integer, and we may raise both sides of a congruence to
a power. More precisely, suppose that a ≡ b (mod m). Then the following
holds:

na ≡ nb (mod m)

for every integer n, and
an ≡ bn (mod m)

for every positive integer n.

Proof. This follows from the previous theorem. Add the congruence a ≡ b

(mod m) to itself n times to get the na ≡ nb (mod m), and multiply it n

times to get an ≡ bn (mod m).

Theorem 15 (Cancellation law). If ac ≡ bc (mod m) and GCD(m, c) = 1,
then a ≡ b (mod m).

Proof. The first part of the hypothesis says that m|(ac − bc), that is, m

divides c(a − b). Since the second part of the hypothesis says that m has
no prime factor in common with c, we can conclude that m must divide
(a − b).

Let us now prove a few simple theorems, to show how congruences can
be used. The important thing in these examples is not the statement of the
theorem, but the method of proof, using congruences.

Theorem 16. Every odd square gives the remainder 1 when divided by 4.

Proof. (Recall that a square is an integer of the form n2 for some n. Hence
the odd squares are 1, 9, 25, 49 and so on.) If a square n2 is odd, then
clearly the number n must also be odd. This implies that n gives remainder
1 or 3 when divided by 4. We consider each of these cases.
Case of remainder 1

In this case, we have
n ≡ 1 (mod 4)

Squaring both sides gives

n2 ≡ 1 (mod 4)

which means that n2 gives remainder 1 when divided by 4.
Case of remainder 3

In this case, we have
n ≡ 3 (mod 4)

Squaring both sides gives

n2 ≡ 9 (mod 4)

and since 9 ≡ 1 (mod 4) we have n2 ≡ 1 (mod 4).
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As another illustration of the use of congruences, we prove the following
fact:

Theorem 17. Let n be a positive integer. Then 3 divides the sum of the
digits of n if and only if 3 divides n.

Proof. Suppose that the digits of n are akak−1 . . . a1a0, where 0 ≤ aj ≤ 9
for each j. (For example, if n = 924, then a2 = 9, a1 = 2 and a0 = 4.) Since
n is written in base 10, this means that

n =
k

∑

j=0

aj · 10
j = ak · 10k + ak−1 · 10

k−1 + . . . + a1 · 10 + a0

Of course, the digit sum of n is the number

k
∑

j=0

aj

The crucial step of the proof is to observe the following:

aj · 10
j ≡ aj (mod 3) (1)

To prove the congruence (1), we can take the congruence

10 ≡ 1 (mod 3)

and raise each side to the power j, and then multiply both sides by aj . Now
we take the congruence (1) and sum it over all j. This gives us

k
∑

j=0

aj · 10
j ≡

k
∑

j=0

aj (mod 3)

This is the same as

n ≡

k
∑

j=0

aj (mod 3)

which means that n is congruent to the digit sum of n, mod 3. This implies
that n is divisible by 3 if and only if its digit sum is divisible by 3.

Now let us prove two important theorems about existence of solutions
to certain congruences.

Theorem 18. Let a, b be two integers. Consider the congruence

ax ≡ b (mod m)

This congruence is solvable (i.e. their exists an integer x satisfying the
congruence) if and only if b is a multiple of GCD(a,m).
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Proof. First we assume that their exists an x satisfying the congruence.
Then (b − ax) is a multiple of m. This implies

b − ax = km

for some integer k. This implies b = ax+km, so b is a linear combination of
m and a. Hence b ∈ 〈a,m〉, which implies that b is a multiple of GCD(a,m).
Now we have to prove the converse. Assume that b is a multiple of GCD(a,m).
Then b ∈ 〈a,m〉, so

b = ax + my

for some integers x and y. For this particular x, we see that b − ax is a
multiple of m, so x satisfies the congruence of the theorem.

Theorem 19 (Chinese remainder theorem). Let a, b ∈ Z, and let m and n

be positive coprime integers. Then there exists z ∈ Z such that

z ≡ a (mod m)

z ≡ b (mod n)

Proof. Since n and m are coprime, we have 〈m,n〉 = Z. In other words,
every integer is a linear combination of m and n. Hence there are some
integers x and y such that

a − b = xm + yn

Now let z = a − xm. This implies z = b + yn. Now it is obvious that z

satisfies the two congruences in the theorem.

The last theorem of this section is a useful fact about primes.

Theorem 20. A prime p > 3 gives remainder 1 or 5 when divided by 6.

Proof. If we divide an integer by 6, the remainder is 0, 1, 2, 3, 4, or 5.
Suppose p is prime and greater than 3. Clearly p cannot be even, so the
remainder of p when divided by 6 cannot be 0, 2, or 4. Also, the remainder
cannot be 3, since this would imply that p is divisible by 3, and hence not
prime. Therefore the remainder must be 1 or 5.

2.5.1 Exercises

For each of the statements E155 to E169, determine whether it is true or
false:
E155 3 ≡ −3 (mod 5)
E156 12 ≡ 24 (mod 24)
E157 0 ≡ 0 (mod 8)
E158 9 ≡ 30 (mod 7)
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E159 31 ≡ −26 (mod 5)
E160 6 ≡ 132 (mod 12)
E161 Every integer n can be written either as 2k or as 2k + 1 for some
integer k.
E162 If n ≡ 3 (mod 5), then n3 ≡ 4 (mod 5).
E163 If a ≡ b (mod 16), then a ≡ b (mod 8).
E164 If a ≡ b (mod 5), then a ≡ b (mod 10).
E165 If a ≡ b (mod m), then −a ≡ −b (mod m).
E166 If x ≡ 3 (mod m), then x + 4 ≡ 7 (mod m).
E167 If a ≡ b (mod m), then a2 ≡ b3 (mod m).
E168 If 2x ≡ 6 (mod 4), then x ≡ 3 (mod 4).
E169 If 3a ≡ 3b (mod 7), then a ≡ b (mod 7).
E170 What remainders can you get when dividing a square by 3?
E171 What remainders can you get when dividing a square by 5?
E172 Is the congruence 2x ≡ 7 (mod 3) solvable? If yes, can you find such
an x?
E173 Is the congruence 8x ≡ 6 (mod 12) solvable? If yes, can you find such
an x?
E174 Is the congruence 9x ≡ 2 (mod 6) solvable? If yes, can you find such
an x?
E175 Is the congruence 3x ≡ 5 (mod 8) solvable? If yes, can you find such
an x?
E176 Is there an integer which gives the remainder 2 when divided by 5
and the remainder 3 when divided by 7? If yes, find such an integer.
E177 Is there an integer which gives the remainder 1 when divided by 10
and the remainder 8 when divided by 9? If yes, find such an integer.
E178 Is there an integer which gives the remainder 2 when divided by 6
and the remainder 3 when divided by 4? If yes, find such an integer.

2.5.2 Problems

P10 Find all prime numbers such that p2 + 2 is also a prime number.
P11 Let n be a positive integer. Prove that n is congruent to the alternating
digit sum of n, mod 11.
P12 Prove that if p > 3 is a prime, then 24|(p2 − 1).
P13 Find an integer x such that 38x ≡ 5 (mod 17).
P14 Is there a positive integer n such that

n2 ≡ n (mod p)

for every prime number p?

32



2.6 Induction proofs

An important method of proof, which is useful both in number theory and
in many other parts of mathematics, is the method of induction. It can often
be used to prove that a certain statement holds for all positive integers n.
Let S(n) denote a statement about the integer n. For example, S(n) could
be any of the following statements:

• n is a prime number

•
∑n

k=1 k = n(n+1)
2

• (52n−1 + 1) is divisible by 6

• (n2 + n + 17) is a prime number

• A set with n elements has 2n subsets

• n can be written as the sum of at most three prime numbers

Consider the first of these examples. In this case, S(2) is a true statement,
while S(4) is a false statement. What do you think about the other state-
ments? Are they true for all positive integers n, or only for some positive
integers n, or perhaps false for all positive integers n?
If a statement is true for all positive integers n, one way of proving it might
be by induction. The idea of an induction proof is the following: Let S(n)
be the statement to be proved for all positive integers n.

1. Prove that S(1) is true (Base step)

2. Prove that S(n) implies S(n + 1) (Induction step)

If we can prove both of these steps, we may conclude that S(n) is true for
all positive integers n (this is called the Principle of Induction).
In most cases, the base step is the easy part and the induction step is
the complicated part. However, you must never forget to do both steps,
otherwise the proof is not valid! Let us now prove a few theorems to show
how induction proofs work.

Theorem 21. For all positive integers n, the integer (52n−1 +1) is divisible
by 6.

Proof. We proceed by induction. The statement S(n) is the statement of
the theorem.
Base step: We compute, for n = 1:

52n−1 + 1 = 6

The statement S(1) therefore says that 6 is divisible by 6, which is of course
true.
Induction step: Assume that S(n) is true. The statement S(n + 1), that
we must prove, says the following:
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52(n+1)−1 + 1 is divisible by 6.

Since 2(n + 1) − 1 is equal to (2n + 1), we must prove that

52n+1 + 1 is divisible by 6.

How can be prove this? We must use the statement S(n), which we assume
to be true. Reformulating in terms of congruences, S(n) says that

52n−1 ≡ −1 (mod 6)

Multiplying both sides by 25, we get

52n+1 ≡ −25 (mod 6)

and since −25 ≡ −1 (mod 6), we can conclude that

52n+1 ≡ −1 (mod 6)

which implies that S(n + 1) is true.
By the Principle of Induction we now know that S(n) is true for all positive
integers n.

Theorem 22. Let n be a positive integer. The sum of the first n positive
integers is equal to n(n+1)

2 .

Proof. The statement S(n) to be proved is the following statement:

n
∑

k=1

k =
n(n + 1)

2

The statement S(n + 1) is the following:

n+1
∑

k=1

k =
(n + 1)(n + 2)

2

Let’s proceed by induction.
Base step: Consider the statement S(n) for n = 1. In this case, we have

n
∑

k=1

k = 1

and
n(n + 1)

2
= 1
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so the statement S(1) is true.
Induction step: Assume that the statement S(n) is true. We must use
this to prove S(n + 1). The statement S(n) says

n
∑

k=1

k =
n(n + 1)

2

Now add (n + 1) to both sides of this equality. We get

(

n
∑

k=1

k
)

+ (n + 1) =
n(n + 1)

2
+ (n + 1)

which is the same as
n+1
∑

k=1

k =
n2

2
+

n

2
+ n + 1

But the right hand side of this equality is equal to (n+1)(n+2)
2 (check this!)

which means that we have proved the statement S(n + 1).
Now the Principle of Induction allows us to conclude that S(n) is true for
all n.

Theorem 23. If A is a set with n elements, then A has 2n subsets.

Proof. Recall that we proved the following lemma in the lectures (we omit
this proof here, as the important point is the induction proof):

Lemma 1. Let the finite set A have one more element than the set B. Then
A has twice as many subsets as B.

Let us now the induction proof. The statement S(n) is the statement of
the theorem.
Base step: The statement S(1) is true, because a set A with one element
has exactly two subsets: the empty set and the set A itself.
Induction step: Assume that S(n) is true. This means that a set with n

elements has 2n subsets. By the lemma we can see that a set with (n + 1)
elements has 2·2n subsets, that is 2n+1 subsets. Hence the statement S(n+1)
is also true.
Now the Principle of Induction allows us to conclude that S(n) is true for
all positive integers n.

Let us again summarize the method of induction:

• In the base step, we prove that S(1) is true

• In the induction step, we assume that S(n) is true, and use this to
prove that S(n + 1) is true
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2.6.1 Exercises

E179 Prove that 23n ≡ 1 (mod 7) for every positive integer n.
E180 Prove that 3n ≡ 3 (mod 6) for every positive integer n.

2.6.2 Problems

P15 Try to find a formula for the sum of the first n odd numbers.

For the last two problems, we define the Fibonacci numbers as follows:

F1 = 1

F2 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2

We can easily compute F3 = 2, F4 = 3, F5 = 5, F6 = 8 and so on.
P16 Prove that F3n is even for every n. (In other words, prove that F3, F6,
F9 and so on are all even.)
P17 Prove that

FnFn+2 + (−1)n = F 2
n+1

for all positive integers n.

2.7 The Euler ϕ function

In general, a function defined on the positive integers (i.e. with Z
+ as the

domain) is usually called an arithmetic function. There are many interesting
and useful arithmetic functions, but in this course we shall only have time
to look at one.

Definition 16. For any positive integer n, we define ϕ(n) to be the number
of elements in the set {1, 2, . . . , n} that are coprime to n.

Example 32. Among the numbers 1, 2, 3, 4, only the number 1 and 3 are
coprime to 4. Hence ϕ(4) = 2.

Example 33. Among the numbers 1, 2, 3, 4, 5, 6, 7, every number except
7 is coprime to 7. Hence ϕ(7) = 6.

Theorem 24. If the prime factorization of n is pe1

1 pe2

2 · · · per

r , then the fol-
lowing formula holds:

ϕ(n) = n ·

r
∏

i=1

(

1 −
1

pi

)

Proof. Omitted.

We will not need the above general formula (and you don’t have to
remember it for the exam), but we shall need the following two special cases
(which you must remember).
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Corollary 1. If p is a prime number, then ϕ(p) = p − 1. If p and q are
prime numbers, and n = pq, then ϕ(n) = (p − 1)(q − 1).

Proof. This follows from the general formula.

Example 34. Using the corollary, we can compute that

ϕ(11) = 10

ϕ(29) = 28

ϕ(15) = 2 · 4 = 8

ϕ(35) = 24

ϕ(22) = 10

Theorem 25 (Euler’s theorem). Let n ≥ 2 be an integer, and let a be a
positive integer coprime to n. Then the following congruence holds:

aϕ(n) ≡ 1 (mod n)

Proof. This will be proved later, using a general theorem in group theory.

Theorem 26 (Fermat’s little theorem). If p is a prime number, and a is a
positive integer, then

ap ≡ a (mod p)

Proof. We consider two cases.
Case 1: p divides a.

In this case, a ≡ 0 (mod p). Hence ap ≡ 0 (mod p), so the theorem is true
in this case.
Case 2: p does not divide a.

We know that φ(p) = p − 1. Since a is coprime to p, we may apply Euler’s
theorem (with n = p) to get the following congruence:

ap−1 ≡ 1 (mod p)

Multiplying both sides by a proves the theorem also in the second case.

Example 35. Fermat’s little theorem is of great help when dealing with
congruences mod a prime number. Consider for example the following ques-
tion:

What is the remainder of 422 when divided by 7?
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Since 422 is a very large number, the question looks difficult. But Fermat’s
little theorem tells us that

47 ≡ 4 (mod 7)

Raising both sides to the power 3 gives us

421 ≡ 43 (mod 7)

and multiplying both sides by 4 gives

422 ≡ 44 (mod 7)

Since 44 = 256, and the number 256 gives remainder 4 when divided by 7,
we can conclude that 422 also gives remainder 4.

2.7.1 Exercises

Compute the following, using either the definition of ϕ or the general for-
mula:
E181 ϕ(16)
E182 ϕ(77)
E183 ϕ(12)
E184 ϕ(21)
E185 ϕ(39)
E186 ϕ(19)
E187 Prove that 262 ≡ 4 (mod 77).
E188 Prove that 825 ≡ 8 (mod 39).
E189 Prove that (521 − 125) is a multiple of 19.
E190 Prove that if p is a prime number, then

ap2

≡ a (mod p)

for every positive integer a.
E191 Find the remainder when 689 is divided by 11.
E192 Find the last digit of the integer 7401.
E193 Find the remainder when 3 · (556) is divided by 8.

2.7.2 Problems

P18 Let a and b be positive integers, and let p be a prime number. Prove
that

(a + b)p ≡ ap + bp (mod p)

P19 Let p be an odd prime number. Prove that the sum

1p + 2p + . . . + (p − 1)p

is divisible by p.
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