SMA205: Introduction to Algebra

Welcome to the course SMA205 - Introduction to Algebra.

e Summaries of all lectures will be distributed, with page numbers so
that you will know if you are missing some page.

e The exam will most probably be given in December. There will be
more information on the exam later.

e With the summaries there will also be exercises and problems. The
exercises will be easy, and will serve only as a help for you to check
that everything is clear. The problems will be harder and will require
some thought. The student who attempts all problems will be well
prepared for the exam.

e You are encouraged to ask questions whenever something is unclear.
You can ask during the lectures, after the lectures, in my office, or by
email.

The outline of the course is as follows:
e Review of sets, relations and functions
e Elementary number theory
e Applications to cryptography
e Introduction to abstract algebra

There will soon be a course web page:
www .andreasholmstrom. org/sma205

Here you will find copys of the lecture notes and additional online references
for further reading. Nothing of this is necessary for the exam, but for those
who want to learn more, it is a good starting point.

You can always email me at andreas.holmstrom@gmail.com if you have
any questions.



1 Review of sets, relations and functions

You will already be familiar with the notions of set, relation and function,
but since these are absolutely fundamental to everything that follows, we
will quickly review them.

1.1 Sets

We can think of a set as any collection of objects. Most often these objects
will be numbers. The objects that belong to a set are called members or
elements of the set. A set can be either finite or infinite. We will use capital
letters, mainly A, B, C, S, T, to denote sets, and small letters (a, b, c, ...)
for the elements of a set. We use the notation

a€esS

to say that a is a member of the set S. We also write a ¢ S if a is not a
member of S. If S and T are two sets, and every element of S is also an
element of T', then we say that S is a subset of T', and we write

SCT

1.1.1 How to describe a set

There are (at least) two ways to describe a set. In both cases, we uses braces
{...} to show that we are dealing with a set. The first way is to list the
elements of the set. For example, if the set S has three elements, namely
the numbers 1, 3, and 7, we may write

S ={1,3,7}

to describe the set S. It does not matter in which order we list the elements.
Thus {2,3} is the same set as {3,2}. Also, repeated elements make no
difference, so {b,a} is the same set as {a,b,a}.

If the set is infinite, we use dots to indicate that the sequence continues. For
example, the set of natural numbers can be described as

{0,1,2,3,...}.

The set of natural numbers will be denoted by N.

The second way to describe a set S is to specify a particular property that
characterizes the elements of the set. For integers, such a property might
for example be “to be even” or “to be greater than 5” or “to be a prime
number”. However, it is not enough to specify a property. To illustrate this,
consider “the set of all numbers greater than 2 and smaller than 10”. Which
numbers are in this set? Is 5 in the set? You would probably say yes. Is



m in the set? Well, that depends on what you mean by “numbers”. The
point here is that you must first specify a basic set of allowed objects, and
then give a property that defines your set from these allowed objects. To
describe the set of all natural numbers between 2 and 10 we write

{r €N |z >2and z <10}

We read this as “the set of all z in N such that = is greater than 2 and
smaller than 10. Of course, 7 is not a member of this set. In general, to
describe the set of all objects in S that satisfies property P, we write

{z € S | x satisfies the property P}

This way of describing a set is generally more useful than the first, and will
be used in most cases in this course.

There is actually a third way to describe a set: to simply describe it in
words. For example “the set of all natural numbers that are a multiple of
five”, of “the set of all people in the world who have the letter h in their
surname”.

1.1.2 Constructions on sets

Given two sets A and B, we can define the following sets:

e AU B, the union of A and B: the set of all elements that are in A or
in B, or in both.

e AN B, the intersection of A and B: the set of all elements that are
both in A and B.

e A\ B, the set of all elements that are in A but not in B.

(we

)

An example of a Yenn diagram




All of these can be illustrated by Venn diagrams, as explained in the lecture.
We say that two sets A and B are equal, and write A = B, if they contain
exactly the same elements. We say that they are disjoint, if they have no
elements in common. There is exactly one set which has no elements at all.
It is called the empty set, and is denoted by the symbol ). It is a subset of
every set.

1.1.3 Cartesian product

If A and B are two sets, we want to consider pairs (a,b), where the first
element a belongs to A and the second element b belongs to B. The set of
all such pairs is called the Cartesian product of A and B, and is denoted by
A x B. Let us take some examples:

o Let A= {1,2} andlet B = {z,y}. Then AxB = {(1,2),(2,2),(1,v),(2,y)}.
e Let A= B =R, the real line. Then A x B is the plane.
o Let A= {5} and let B = {u,v,z}. Then Ax B = {(5,u), (5,v), (5,2)}.

Now let A = {x,y}. What are the elements of A x A? Well, A x A is
the set {(z,x), (z,y), (y,z), (y,y)}. The point here is that (x,y) is not the
same element as (y,x). We express this by saying that the elements of the
Cartesian product are ordered pairs. For two ordered pairs to be equal, their
first entries must be equal and their second entries must be equal.

1.1.4 Exercises

For exercises E1 to E18, let

A = {zeN|1<z<6}
B = {2,4,6}
c = {6,7}

Decide whether the following statements are true or false:
E1 B and C are disjoint.
E22c A

E32¢ B.

E4 AnC=BnC.

E5 AC B.

E6 C C B.

E7 B C A.

Describe the following sets:
E8 A\ B.

E9 BNnC

E10 AUB



El11 BxC

E12 BU(ANCQC)

E13 Cn(AUB)

E14 B\ A

E15 BU(

E16 AN

E17 How many elements are there in A x C'?7

E18 How many elements are there in A x (BN C)?

In exercises E19 to E25, let A, B and C' be any sets.

E19 Is A a subset of A?

E20 Is () a subset of A?

E21 Is A a subset of A x A?

E22 Is () a subset of A x A?

E23 Prove that AN (BUC)=(ANB)U(ANC)

(There are two ways of doing this. One way is to draw the Venn diagram
of both sides and check that they are equal. The other way is to show that
any element of the left hand side must be in the right hand side, and the
other way around.)

E24 Prove that AU(BNC)=(AUB)N(AUC)

E25 Prove that (A\ B)U(B\ A) = (AUB)\ (AN B)

Determine the number of elements in the following sets:

E26 {r e N | z = 2?}.

E27 {a € N | a < 19 and a = 2 for some k € Z}.

E28 {z € N | z is even and z < 23}.

Answer the following questions:

E29 If set A has 2 elements, how many elements does A x A have?

E30 If the finite set A has n elements, how many elements does A x A have?
E31 If the set A has 1 elements, how many subsets does A have?

E32 If the set A has 2 elements, how many subsets does A have?

1.2 Relations

If we are given a set S, we shall be interested in relations between the
elements of the set. Let us consider the set of integers, to see some examples.
The following are relations on the set of integers:

e “g is less than or equal to b”
e “q divides b” (this will be defined later)
e “a is equal to b”

e “g has the same sign' as b”

'Here we consider negative numbers to have a minus sign, positive numbers to have a
plus sign, and the number 0 to have a neutral sign



When we are given a relation we can consider the set of all ordered pairs
that satisfy the relation. Take for example the first relation in the above list.
This defines a set R, in which for example (4,14) and (5,5) are members,
while (5,4) and (14,4) are not. Similarly, consider the set S of all pairs
satisfying the last relation in the list. In this case (—2, —3) and (5,99), and
(0,0) are all in the set S, while (1,—1) and (0,1) are not in S. We can go
on like this, and observe that every relation on a set A determines a certain
subset of A x A. In fact, this point of view is used as the abstract definition
of a relation:

Definition 1. A relation on a set A is a subset of A x A.

If R is any relation on a set, we write a R b if the pair (a,b) belongs
to the relation. The following definitions will allow us to gain a better
understanding of relations.

Definition 2. A relation is symmetric if a R b implies b R a.
A relation is reflexive if a R a for every a.
A relation is transitive if @ R b and b R ¢ implies a R c.

Examples: the relation < is reflexive and transitive, but not symmetric.
The relation = is symmetric, reflexive, and transitive.

1.2.1 Equivalence relations

We define a partition of a set S to be a collection of nonempty pairwise
disjoint subsets of S set whose union is S. Each subset in a partition is
called a cell. If we are given a partition of a set S, we can consider the
following relation: “a and b are in the same cell”. Thus every partition
determines a relation. If a is an element, we write cl(a) for the cell that
contains a.

Definition 3. An equivalence relation is a relation determined by a parti-
tion, by the rule “a and b are in the same cell”.

For example, consider the partition of the integers into the three sets of
negative numbers, positive numbers, and the set {0}. The relation deter-
mined by this partition is the last relation in the above list of examples.

Theorem 1. A relation is an equivalence relation if and only if it is sym-
metric, reflexive and transitive.

Proof. Given in lectures. O



1.2.2 Exercises

For exercises E33 to E40, let R be the relation > on the natural numbers.
Are the following statements true or false?

E33 (5,4) € R

E34 R is symmetric.

E35 (9,9) ¢ R.

E36 R is transitive.

E378 R 1.

E38 R is reflexive.

E39 (2,-1) € R.

E40 R is an equivalence relation.

For exercises E41 to E48, define a relation R on N by

a Rb if (a—b)isan even integer

Are the following statements true or false?

E41 (5,9) € R

E42 R is reflexive.

E43 (10,1) ¢ R.

E44 R is symmetric.

E45 7 R 4.

E46 R is transitive.

E47 (2,2) € R.

E48 R is an equivalence relation.

For exercises E49 to E55, let A = {1,2,3,...,9,10}. Are the following lists
of sets partitions of A7

E49 {1,2}, {3,5,7,9}, {4,6,8}.

E50 {a € A | ais even}, {a € A | ais odd}.

E51 {1,2}, {3,5,7}, {2,4,6,7,8,9,10}.

E52 {8,4,2}, {9,1,10}, {5}, {7,3,6}.

E53 {1,3,5,7}, {0,2,4,6,8}, {11,10,9}.

E54 What is the maximal possible number of cells in a partition of A?
E55 What is the minimal possible number of cells in a partition of A?

1.3 Functions

Let A and B be sets. A function f from A to B can be thought of as some
kind of rule, or machine, that assigns one element of B to each element of
A. For example, if A = B = N, there is a function which to each element
n € N assigns the square n? € N. A function is sometimes called a map or
mapping. If an element b € B is assigned to a € A we say that a is sent to
b, or that a maps to b, and we write f(a) = b.

Now let f be a function from A to B. We can then consider the set of all
pairs (a,b) € A x B such that f(a) = b. This is a subset of A x B, called the



graph of f. The graph of a function has the following property: for every
a € A there is a unique element b € B such that (a,b) is in the graph. This
leads to the abstract definition of a function:

Definition 4. A function from a set A to a set B is a subset f of A x B such
that for every a € A there is a unique b € B such that (a,b) € f. Usually
we write f(a) = b instead of (a,b) € f.

If f is a function from A to B we write f : A — B. We call A the domain
of f and B the codomain of f. The set

im(f) ={be€ B | b= f(a) for some a € A}

is called the image of f. If an element a is mapped to an element b we write
a — b. The most common way of specifying a function is illustrated by the
following example, in which we take A = B = N.

f:N—=N
P
This function, which sends each natural number to its square, can also be
described by the formula

fla) =a?

which is perhaps more familiar.

Definition 5. Let f : A — B be a function. We say that f is injective (or
one-to-one) if f(x) = f(y) implies © = y. We say that f is surjective (or
onto) if for every b € B, there is some a € A such that f(a) = b. We say
that f is bijective if it is both surjective and injective.

In other words, f is surjective if im(f) equals B, and f is injective if
two different elements of A always are mapped to two different elements of
B (hence “two-to-two” would actually be a better word than “one-to-one”).
If f: A— Band g: B — C are functions, we can define a function A from
A to C by the rule h(a) = g(f(a)). This function called the composite and
is denoted by go f.

1.3.1 Exercises
For exercises E56 to E70, define

g:N—N

xb—>:v2—;1:—|—1

and let f: N — N be defined by f(z) =z + 2.
E56 Is f injective?



E57 Is f surjective?

E58 Is f bijective?

E59 What is the domain of f?
E60 What is the codomain of f?
E61 What is the image of f7
E62 Is g injective?

E63 Is g surjective?

E64 Is g bijective?

E65 What is the codomain of g7
E66 Write down some elements of im(g).
E67 Compute g o f(7).

E68 Compute f o g(7).

E69 Is f o g injective?

E70 Is g o f injective?

1.4 Problems

P1 If A has five elements and B has three elements, how many different
functions are there from A to B?

P2 Try to find a relation on some set which is reflexive and symmetric, but
not transitive.

P3 If the set A has n elements, how many subsets does A have?

P4 Is it true that the composite of two injective functions is injective?

P5 Is it true that the composite of two surjective functions is surjective?
P6 Define a function f : N — N by f(a) = “sum of the digits of a”. This
means that for example f(2) = 2, f(35) = 8 and f(18247) = 22. Let
g = fo f. Answer the following questions:

(i) Compute f(669).

(i) Is f injective?

(iii) Is f surjective?

(iv) Is f bijective?

(v) Compute g(15005).
(vi) Compute g(259781).
(vii) What is the codomain of g7
(viii) What is the domain of g7
(ix) Is g injective?

(x) Is g surjective?



