
2 Elementary number theory

2.1 Introduction

Elementary number theory is concerned with properties of the integers.
Hence we shall be interested in the following sets:

• The set if integers {. . . − 2,−1, 0, 1, 2, 3, . . .}, denoted by Z

• The set of natural numbers {0, 1, 2, 3 . . .}, denoted by N

• The set of positive integers {1, 2, 3, . . .}, denoted by Z
+

• The set of prime numbers {2, 3, 5, 7, 11, 13, . . .}, denoted by P

“Elementary number theory” means the part of number theory that does
not require heavy background in pure mathematics. But elementary does
not mean easy!! There are many extremely hard problems in elementary
number theory, for example the following:

Problem 1. Find all solutions to the following equation:

a(b2) = ba

where a and b are positive integers.

This problem can be solved using only some calculus and really basic
properties of the integers (such as the Fundamental Theorem of Arithmetic,
see below), but it is still a very difficult problem!
In this part of the course, we will prove most of the theorems we state, with
the aim of making you familiar with rigorous mathematical proofs. Number
theory is a good area for starting to learn about proofs, since most proofs
are short and not to hard to understand. However, we will not prove every
theorem, because of our limited time, and because I don’t want to torment
you with proofs that don’t give any particular insights. You are expected
to:

• Understand and remember the statement of every theorem

• Be able to use the theorems for computations in concrete examples,
such as the exercises of section 2.2 and 2.3 below

• For the final exam, be able to prove the theorems that are proved
in these printed lecture notes (however, if you only aim for a passing
grade, it should not be necessary to know the proofs)
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2.2 Division, factorization and prime numbers

Definition 6. Let a and b be integers. If there exists an integer m such
that b = ma, then we say that a divides b, or that a is a divisor of b, or that
b is a multiple of a, or that b is divisible by a. We write this as a|b.

For example, 5 divides 15, and 6 divides 12. In other words, 15 is a
multiple of 5 and 12 is a multiple of 6.

Example 1. List all the positive divisors of 6. Answer: 1, 2, 3, 6.

Example 2. List all the positive divisors of 11. Answer: 1, 11.

Example 3. List all the positive divisors of 32. Answer: 1, 2, 4, 8, 16, 32.

2.2.1 Prime numbers

Definition 7. Let a > 1 be an integer. We say that a is a prime number if
has exactly two positive divisors, namely 1 and a. We say that a is composite

if it is not prime.

The number 1 is neither prime nor composite.
There is a simple method for listing the prime numbers up to any given size.
This method is called Eratosthenes sieve. It goes as follows:

1. Write down the numbers 2, 3, 4, . . . as far as you like.

2. Draw a circle around the number 2, and cross out all larger multiples
of 2, that is 4, 6, 8, . . .

3. Take the smallest untouched number in the list. Draw a circle around
it, and cross out all larger multiples of it.

4. Repeat step 3 until you come to the end of the list.

5. Now all the prime numbers have a circle, and the composite numbers
are crossed.

If you try this, you will see that the first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, . . .

2.2.2 Quotient and remainder

Now let’s discuss the concepts of quotient and remainder. You have probably
seen this a very long time ago, in primary school. For example, when we
divide 17 by 5, the quotient is 3 and the remainder is 2.

Definition 8. Let a, b be positive integers. In the division a
b
, the quotient

is the largest number q such that a ≥ bq. We denote it by q or q(a, b). The
remainder is the number (a − bq), denoted by r or r(a, b).
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Example 4. In the division 10
3 , the quotient is 3, and the remainder is 1.

Hence q(10, 3) = 3 and r(10, 3) = 1.

Example 5. In the division 24
6 , the quotient is 4, and the remainder is 0.

Hence q(24, 6) = 4 and r(24, 6) = 0.

Example 6. In the division 19
5 , the quotient is 3, and the remainder is 4.

Example 7. In the division 1983
179 , the quotient is 11, and the remainder is

14.

2.2.3 GCD and LCM

Definition 9. When a and b are integers, not both zero, we write GCD(a, b)
for the greatest common divisor of a and b, that is the largest positive integer
that divides both a and b. In the case where a and b are both zero, we define
GCD(a, b) to be 0.

Example 8. GCD(15, 12) = 3. GCD(24, 42) = 6. GCD(19, 28) = 1.

Example 9. GCD(−12,−8) = 4. GCD(0, 35) = 35. GCD(−11, 0) = 11.

Definition 10. If GCD(a, b) = 1, we say that a and b are coprime.

Definition 11. When a and b are nonzero integers, we write LCM(a, b) for
the least common positive multiple of a and b, that is the smallest positive
number that has both a and b as divisors. If a or b (or both) equal zero, we
define LCM(a, b) to be zero.

Example 10. LCM(6, 7) = 42. LCM(8,−12) = 24. LCM(0, 27) = 0.

The best way of finding the GCD of two numbers is to use Euclid’s
algorithm.

Algorithm 1 (Euclid’s algorithm). Suppose that a and b are positive inte-
gers, and that we want to find GCD(a, b). The idea of Euclid’s algorithm
is to produce a decreasing sequence of positive integers, such that the last
nonzero number in the sequence is equal to GCD(a, b). We start with a and
b, and then we compute remainders.

1. Let m1 be the largest of a and b

2. Let m2 be the smaller of a and b

3. Let m3 = r(a, b).

4. Continue like this, putting mk+1 = r(mk−1,mk).

5. The last nonzero number in the sequence is GCD(a, b).
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Let’s do one example:

Example 11. Let’s compute GCD(1806, 3174). We get the following se-
quence:

m1 = 3174

m2 = 1806

m3 = r(3174, 1806) = 1368

m4 = r(1806, 1368) = 438

m5 = r(1368, 438) = 54

m6 = r(438, 54) = 6

m7 = r(54, 6) = 0

so we get GCD(1806, 3174) = 6.

The following formula is useful when computing the LCM of two in-
tegers. Since we have a method for finding GCD, we can use it to find
LCM .

Theorem 2. For any positive integers a and b, we have

GCD(a, b) · LCM(a, b) = a · b

Proof. This follows immediately from the alternative way of thinking about
GCD and LCM , discussed after the Fundamental Theorem of Arithmetic
below.

Example 12. We want to compute LCM(1254, 779). Using Euclid’s algo-
rithm, we find that GCD(1254, 779) = 19. From the above theorem, we can
compute

LCM(1254, 779) =
1254 · 779

19
= 51414

2.2.4 Factorization

Now we’ll talk about factorization of integers. You have probably seen
before that every composite number can be factored into prime numbers.
Some examples:

Example 13. 39 = 3 · 13

Example 14. 70 = 2 · 5 · 7

Example 15. 686 = 2 · 7 · 7 · 7 (we usually write this as 2 · 73)

Example 16. 3762 = 2 · 32 · 11 · 19
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There is only one way to factor an integer (up to the order of the factors).
This is one of the most important statements of Elementary number theory:

Theorem 3 (Fundamental Theorem of Arithmetic). Every positive integer
n > 1 can be written in a unique way as a product

n = pe1

1 pe2

2 · · · pek

k

where p1 < p2 < . . . < pk are primes and ei is a positive integer for every i.

Proof. The proof uses a method called induction. We will introduce this
method later, and perhaps also give the proof of this theorem, if we have
time.

More examples:

Example 17. The prime factorization of 24 is 23 · 3.

Example 18. The prime factorization of 744 is 23 · 3 · 31.

Example 19. The prime factorization of 18095 is 5 · 7 · 11 · 47.

Example 20. The prime factorization of 1862 is 2 · 72 · 19.

Of, course, to find the factorization of large numbers it is most convenient
to use a computer. If you feel that factoring integers is boring or meaningless,
you may be interested in the following: If you can find the prime factorization
of the following integer:

740375634795617128280467960974295731425931888892312890849362326389

727650340282662768919964196251178439958943305021275853701189680982

867331732731089309005525051168770632990723963807867100860969625379

34650563796359

then you will be awarded a sum of US$ 30,000 from a research institute in
the USA. Later in the course we will explain why someone would pay so
much just for a factorization of a large number.
A natural question is the following: How do we determine whether a given
number, for example 109, is prime or not? For large numbers, this is a
difficult question, but for small numbers, we can use one of two simple
methods. We can use either the Eratosthenes sieve (see above) or we can
use the following fact:

Theorem 4. If a positive integer n is composite, then it has a prime factor
p such that p ≤ √

n.
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Proof. Let p be the smallest prime factor of n. Then we have n = p · m for
some positive integer m. The number m can not be equal to 1, because that
would imply n = p, which contradicts the hypothesis that n is composite.
Any prime factor of m is at least as large as p, so we must have p ≤ m.
Hence p2 ≤ p · m, that is p2 ≤ n, which implies p ≤ √

n. We have proved
that the smallest prime factor of n is smaller than or equal to

√
n.

To check whether a given integer n is prime or not, we could check, for
each prime number smaller than n, whether p divides n or not. If no such
prime divides p, we could conclude that n is itself prime. Because of the
above theorem, it is actually sufficient to only try all prime numbers up to√

n.

Example 21. Is 109 a prime number or not? To find the answer, we must
check if 109 is divisible by some prime number smaller than

√
109 = 10.44 . . ..

These primes are 2, 3, 5, and 7. Checking shows that none of them divides
109, so the number 109 is a prime number.

Example 22. Is 437 a prime number or not? To find the answer, we must
check all primes up to

√
437 = 20.9 . . .. None of 2, 3, 5, 7, 11, 13, 17 divides

437, but we find that 19 divides 437, so it is not a prime.

2.2.5 Some basic but useful facts

Let n be a positive integer

• 2|n if and only if 2 divides the last digit of n

• 5|n if and only if 5 divides the last digit of n

• 3|n if and only if 3 divides the sum of the digits of n

• 11|n if and only if 11 divides the alternating sum of the digits of n

There are also similar rules for 7 and 13, but they are slightly more compli-
cated, and we will not need them.

Example 23. The number 32109 is not divisible by 2 or 5, since the last
digit is 9. It is divisible by 3, because the sum of the digits is 15. It is also
divisible by 11, because the alternating sum of the digits is

3 − 2 + 1 − 0 + 9 = 11

which is of course divisible by 11.
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2.2.6 Another way of thinking about GCD and LCM

Let a and b be two positive integers. Consider the set of all primes oc-
curring in the prime factorizations of these two integers. Call these primes
q1, q2, . . . qn. Then we have

a = qe1

1 · · · qen

n

and also
b = q

f1

1 · · · qfn

n

for some natural numbers ei and fi. Some of these ei and fi might be zero,
for example e1 will be zero if q1 does not occur in the factorization of a.
When will it be the case that a divides b? Using the above notation, it
will be the case exactly if ei ≤ fi for each i. For example, the number
18 = 2 · 32 divides the number 252 = 22 · 32 · 7, because each exponent in the
factorization of 18 is smaller than or equal to the corresponding exponent
in the factorization of 252.
We continue to use the notation introduced above, and we want to find the
GCD and LCM of a and b. We define new numbers as follows:

gi = min(ei, fi)

mi = max(ei, fi)

(this means that mi is the largest of ei and fi, and gi is the smallest.)
With this notation, we have

GCD(a, b) = q
g1

1 · · · qgn

n

and
LCM(a, b) = qm1

1 · · · qmn

n

Some examples will make this clearer.

Example 24. Take a = 1176 = 23 · 3 · 72 and b = 3276 = 22 · 32 · 7 · 13.
Then, with the above notation, we have

q1 = 2, q2 = 3, q3 = 7, q4 = 13

e1 = 3, e2 = 1, e3 = 2, e4 = 0

f1 = 2, f2 = 2, f3 = 1, f4 = 1

g1 = 2, g2 = 1, g3 = 1, g4 = 0

m1 = 3, m2 = 2, m3 = 2, m4 = 1

and we can conclude that

GCD(a, b) = 22 · 3 · 7 = 84, LCM(a, b) = 23 · 32 · 72 · 13 = 45864
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Example 25. Take a = 875 = 53 · 7 and b = 6885 = 34 · 5 · 17. Then, with
the above notation, we have

q1 = 3, q2 = 5, q3 = 7, q4 = 17

e1 = 0, e2 = 3, e3 = 1, e4 = 0

f1 = 4, f2 = 1, f3 = 0, f4 = 1

g1 = 0, g2 = 1, g3 = 0, g4 = 0

m1 = 4, m2 = 3, m3 = 1, m4 = 1

and we can conclude that

GCD(a, b) = 5, LCM(a, b) = 34 · 53 · 7 · 17 = 1204875

2.2.7 Exercises

E71 Find the quotient and the remainder in the division 31
6 .

E72 Find the quotient and the remainder in the division 399
12 .

E73 Find the quotient and the remainder in the division 504
84 .

E74 Find the prime factorization of the following integers: 9, 21, 39, 51, 53,
72, 88, 91.
E75 Find the prime factorization of the following integers: 18513, 9288,
103350.
For each of the statements E76 to E95, determine whether it is true or false:
E76 10|24
E77 24|10
E78 7|49
E79 8 is a multiple of 4
E80 11 is a multiple of 33
E81 37 is a multiple of 37
E82 18 divides 6
E83 5 is a divisor of 25
E84 6 is a divisor of 9
E85 49|7
E86 106 divides 0
E87 0 divides 106
E88 0 divides 0
E89 1 is a divisor of 12
E90 1 is a multiple of 0
E91 8 is a multiple of 1
E92 0 is a multiple of 1
E93 0 is a multiple of 129
E94 0 is a multiple of 1000
E95 27 is divisible by 9
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E96 List the positive divisors of 25.
E97 List the positive divisors of 18.
E98 List the first few positive multiples of 7.
E99 List the first few positive multiples of 23.
E100 List the multiples of 0.
E101 Use Eratosthenes sieve to list all primes smaller than 100. How many
are they?
E102 Which of the following numbers are prime: 10, 37, 51, 72, 101, 173,
309, 1002, 10235, 13273.
Compute the following quotients and remainders:
E103 q(180, 18).
E104 r(180, 18).
E105 q(99, 7).
E106 r(99, 7).
E107 q(846, 19).
E108 r(846, 19).
E109 q(3477, 2190).
E110 r(3477, 2190).
E111 q(6991, 1885).
E112 r(6991, 1885).
Compute the following:
E113 GCD(60, 90).
E114 LCM(60, 90).
E115 GCD(192, 318).
E116 LCM(192, 318).
E117 GCD(1992, 432).
E118 GCD(5005, 11011).
E119 GCD(0, 58).
E120 LCM(99, 0).
E121 GCD(0, 0).
E122 GCD(192, 318).
E123 GCD(2118, 713).
E124 Are 218 and 5444 coprime?
E125 Are 4730 and 13671 coprime?.
E126 Find GCD(79507, 5547) without using Euclid’s algorithm. You may
use the fact that 79507 = 433 and 5547 = 3 · 432.
Find the prime factorization of the following six integers:
E127 343
E128 3280
E129 4114
E130 10989
E131 2592
E132 17303
E133 Compute GCD(10989, 17303).
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2.2.8 Problems

P7 Prove that “a divides b” is a reflexive and transitive relation on Z.

Try to determine whether the following two statements are true or false.
You may begin by checking whether the statement holds or not for some
small values of n.
P8 For all n ∈ Z

+, the following formula holds:

1 + 2 + 3 + . . . + n =
n(n + 1)

2

P9 Let n be an integer. Then n2 + n + 17 is always a prime number.

2.3 Ideals

We shall now discuss certain subsets of Z which are very important.

Definition 12. An ideal is a subset of Z of the following form:

{x ∈ Z | x is a multiple of m}

for some integer m. We write 〈m〉 for this ideal.

Example 26. The ideal 〈5〉 is the set

{. . . ,−10,−5, 0, 5, 10, 15, 20, . . .}

Example 27. The ideal 〈12〉 is the set

{. . . ,−24,−12, 0, 12, 24, 36, 48, . . .}

Example 28. The ideal 〈0〉 is the set {0}. This ideal is called the zero ideal.

Note that every ideal except the zero ideal is an infinite set, containing
both negative and positive numbers, and also the number zero.

Definition 13. For a nonzero ideal, we define the generator of the ideal to
be the smallest positive element of the ideal. The generator of the zero ideal
is defined to be the number 0.

Example 29. The generator of the ideal

{. . . ,−6,−3, 0, 3, 6, 9, 12, 15, . . .}

is the number 3.

Note that the generator is defined so that any ideal is the set of all
multiples of its generator.
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Theorem 5. A nonempty subset M of Z is an ideal if and only if it is closed
under subtraction. (This last condition means that whenever n and k are
in M , then (n − k) is also in M .)

Proof. Omitted.

Definition 14. Let a, b ∈ Z. A linear combination of a and b is an integer
of the form xa + yb for some x, y ∈ Z. The set of all linear combinations of
a and b is denoted by 〈a, b〉.

Example 30. Some examples of linear combinations of a and b:

2a + 3b , 10a − b , b , −a − 100b

Example 31. 8 is a linear combination of 12 and 26, because we have
8 = 5 · 12 − 2 · 26. Another example: 1 is a linear combination of 10 and 7,
because we have 1 = 5 · 10 − 7 · 7.

The set 〈a, b〉 is the set of all integers that can be reached from 0, using
only jumps of length a and b. For example, the last example shows that
making five jumps of length 12 in the positive direction and then two jumps
of length 26 in the negative direction takes us to the number 8. Similarly,
we can reach 1 by jumping five jumps of length 10 in the positive direction,
and then seven jumps of length 7 in the negative direction.

Theorem 6. Let a and b be two integers. Then the set 〈a, b〉 is an ideal.

Proof. It is enough to show that the set is closed under subtraction. So let
n and k be two elements of 〈a, b〉. Then we have

n = x1a + y1b

k = x2a + y2b

for some integers x1, x2, y1, y2. But we see that

n − k = (x1 − x2) · a + (y1 − y2) · b

which shows that (n − k) is also a linear combination of a and b. Hence we
can conclude that 〈a, b〉 is closed under subtraction.

Theorem 7. The generator of 〈a, b〉 is equal to GCD(a, b).

Proof. We consider two different cases, and use a separate argument for each
case. In the proof of Case 2, we use the following three facts:

• If d|a and d|b, then d divides every linear combination of a and b.

• If d|a and d|b, then d also divides GCD(a, b).
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• If two positive integers divide each other, then they must be equal.

Case 1: 〈a, b〉 is the zero ideal. This means that every linear combination
of a and b is equal to 0. Since a is a linear combination of a and b, we see
that a = 0. For the same reason, b = 0. So from the definition of GCD, we
see that GCD(a, b) = 0. Clearly this is equal to the generator of 〈a, b〉.
Case 2: 〈a, b〉 is not the zero ideal. Let d be the generator of 〈a, b〉.
It is a positive number. Since it is a linear combination of a and b, there
are integers x, y such that d = xa + by. By definition of GCD, the number
GCD(a, b) divides a, and it also divides b. Hence it must divide d (by the
first fact above).
The set 〈a, b〉 is the set of all multiples of the generator d. Since a and b are
elements of 〈a, b〉, both a and b are multiples of d. Therefore, (by the second
fact above), d must divide GCD(a, b). Now d and GCD(a, b) are positive
integers dividing each other, so they must be equal (third fact above).

Theorem 8 (Bezout’s theorem). Let a, b ∈ Z. Then GCD(a, b) can be
written as a linear combination of a and b.

Proof. The previous theorem shows that GCD(a, b) is an element of 〈a, b〉.

Theorem 9. The intersection of two ideals is an ideal.

(I forgot to prove this in class, but include it here for completeness.)

Proof. Let I and J be two ideals. Then they are both closed under subtrac-
tion, and they both contain the number 0. Let n and k are any elements of
the intersection I ∩ J . Then because n and k are in I, the difference (n− k)
is also an element of I. For the same reason we see that (n − k) is in J .
But this implies that (n − k) is an element of I ∩ J . Hence I ∩ J is closed
under subtraction , so it is an ideal. (It is nonempty because it contains the
number 0.)

Theorem 10. The generator of 〈a〉 ∩ 〈b〉 is equal to LCM(a, b).

Proof. Again we consider two different cases.
Case 1: At least one of a and b equals zero.

In this case one of the sets 〈a〉 and 〈b〉 (or both) is the zero ideal. Hence the
intersection 〈a〉 ∩ 〈b〉 is the zero ideal, and its generator is 0. We also have
LCM(a, b) = 0, by definition of LCM .
Case 1: a and b are both nonzero.

We know that

• 〈a〉 is the set of all multiples of a

• 〈b〉 is the set of all multiples of b
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Hence the intersection of the two ideals is the set of integers that are a
multiple of a and a multiple of b. Since LCM(a, b) has this property, it
is an element of 〈a〉 ∩ 〈b〉. We must show that LCM(a, b) is actually the
smallest positive element of 〈a〉∩〈b〉. But this follows immediately from the
definition of LCM .

Theorem 11 (“To divide is to contain”). Let a and b be integers. Then
a|b if and only if 〈a〉 ⊇ 〈b〉.

Proof. There are two things to prove.
Part 1: a|b =⇒ 〈a〉 ⊇ 〈b〉.
Suppose that a divides b. Then b = ac for some c. Hence every multiple of
b is also a multiple of a. Hence the set of all multiples of b is a subset of the
set of all multiples of a, so 〈a〉 ⊇ 〈b〉.
Part 2: 〈a〉 ⊇ 〈b〉 =⇒ a|b.
Suppose that 〈a〉 ⊇ 〈b〉. Since b is an element of 〈b〉, it must then also be an
element of 〈a〉. This means that b is a multiple of a, that is a|b.

2.3.1 Exercises

Are the following three sets examples of ideals?
E134 The set of positive integers.
E135 The set of even integers.
E136 The set of prime numbers.
E137 Write down some elements of 〈9〉.
E138 Write down some elements of 〈7〉 ∩ 〈3〉.
E139 What is the generator of 〈191〉?
E140 What is the generator of 〈6〉 ∩ 〈9〉?
E141 How many elements of the ideal 〈7〉 are positive and smaller than 55?
E142 Is 14 a linear combination of 2 and 6 ?
E143 Is 9 a linear combination of 2 and 6 ?
Compute the generators of the following ideals:
E144 〈4, 9〉
E145 〈114, 216〉
E146 〈50700, 8424〉
E147 〈4〉 ∩ 〈3〉
E148 〈16〉 ∩ 〈18〉
Use the previous exercises to answer the following questions:
E149 Is 17 a linear combination of 4 and 9?
E150 Is 18911 a linear combination of 4 and 9?
E151 Is 18 a linear combination of 114 and 216?
E152 Is 2 a linear combination of 114 and 216?
E153 Is 258 a linear combination of 114 and 216?
E154 Is 1092 a linear combination of 8424 and 50700?
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