
SMA205 - Introduction to algebra

Welcome to the course SMA205 - Introduction to Algebra.

• Summaries of all lectures will be distributed, with page numbers so
that you will know if you are missing some page.

• The exam will most probably be given in December. There will be
more information on the exam later.

• With the summaries there will also be exercises and problems. The
exercises will be easy, and will serve only as a help for you to check
that everything is clear. The problems will be harder and will require
some thought. The student who attempts all problems will be well
prepared for the exam.

• You are encouraged to ask questions whenever something is unclear.
You can ask during the lectures, after the lectures, in my office, or by
email.

The outline of the course is as follows:

• Review of sets, relations and functions

• Elementary number theory

• Applications to cryptography

• Introduction to abstract algebra

There will soon be a course web page:

www.andreasholmstrom.org/teaching/sma205/sma205.html

Here you will find copys of the lecture notes and additional online references
for further reading. Nothing of this is necessary for the exam, but for those
who want to learn more, it is a good starting point.

You can always email me at andreas.holmstrom@gmail.com if you have
any questions.
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1 Review of sets, relations and functions

You will already be familiar with the notions of set, relation and function,
but since these are absolutely fundamental to everything that follows, we
will quickly review them.

1.1 Sets

We can think of a set as any collection of objects. Most often these objects
will be numbers. The objects that belong to a set are called members or
elements of the set. A set can be either finite or infinite. We will use capital
letters, mainly A, B, C, S, T, to denote sets, and small letters (a, b, c, . . . )
for the elements of a set. We use the notation

a ∈ S

to say that a is a member of the set S. We also write a /∈ S if a is not a
member of S. If S and T are two sets, and every element of S is also an
element of T , then we say that S is a subset of T , and we write

S ⊆ T

1.1.1 How to describe a set

There are (at least) two ways to describe a set. In both cases, we uses braces
{. . .} to show that we are dealing with a set. The first way is to list the
elements of the set. For example, if the set S has three elements, namely
the numbers 1, 3, and 7, we may write

S = {1, 3, 7}

to describe the set S. It does not matter in which order we list the elements.
Thus {2, 3} is the same set as {3, 2}. Also, repeated elements make no
difference, so {b, a} is the same set as {a, b, a}.
If the set is infinite, we use dots to indicate that the sequence continues. For
example, the set of natural numbers can be described as

{0, 1, 2, 3, . . .}.

The set of natural numbers will be denoted by N.
The second way to describe a set S is to specify a particular property that
characterizes the elements of the set. For integers, such a property might
for example be “to be even” or “to be greater than 5” or “to be a prime
number”. However, it is not enough to specify a property. To illustrate this,
consider “the set of all numbers greater than 2 and smaller than 10”. Which
numbers are in this set? Is 5 in the set? You would probably say yes. Is
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π in the set? Well, that depends on what you mean by “numbers”. The
point here is that you must first specify a basic set of allowed objects, and
then give a property that defines your set from these allowed objects. To
describe the set of all natural numbers between 2 and 10 we write

{x ∈ N | x > 2 and x < 10}

We read this as “the set of all x in N such that x is greater than 2 and
smaller than 10. Of course, π is not a member of this set. In general, to
describe the set of all objects in S that satisfies property P , we write

{x ∈ S | x satisfies the property P}

This way of describing a set is generally more useful than the first, and will
be used in most cases in this course.
There is actually a third way to describe a set: to simply describe it in
words. For example “the set of all natural numbers that are a multiple of
five”, of “the set of all people in the world who have the letter h in their
surname”.

1.1.2 Constructions on sets

Given two sets A and B, we can define the following sets:

• A ∪ B, the union of A and B: the set of all elements that are in A or

in B, or in both.

• A ∩ B, the intersection of A and B: the set of all elements that are
both in A and B.

• A \ B, the set of all elements that are in A but not in B.
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All of these can be illustrated by Venn diagrams, as explained in the lecture.
We say that two sets A and B are equal, and write A = B, if they contain
exactly the same elements. We say that they are disjoint, if they have no
elements in common. There is exactly one set which has no elements at all.
It is called the empty set, and is denoted by the symbol ∅. It is a subset of
every set.

1.1.3 Cartesian product

If A and B are two sets, we want to consider pairs (a, b), where the first
element a belongs to A and the second element b belongs to B. The set of
all such pairs is called the Cartesian product of A and B, and is denoted by
A × B. Let us take some examples:

• Let A = {1, 2} and let B = {x, y}. Then A×B = {(1, x), (2, x), (1, y), (2, y)}.

• Let A = B = R, the real line. Then A × B is the plane.

• Let A = {5} and let B = {u, v, z}. Then A×B = {(5, u), (5, v), (5, z)}.

Now let A = {x, y}. What are the elements of A × A? Well, A × A is
the set {(x, x), (x, y), (y, x), (y, y)}. The point here is that (x, y) is not the
same element as (y, x). We express this by saying that the elements of the
Cartesian product are ordered pairs. For two ordered pairs to be equal, their
first entries must be equal and their second entries must be equal.

1.1.4 Exercises

For exercises E1 to E18, let

A = {x ∈ N | 1 ≤ x ≤ 6}
B = {2, 4, 6}
C = {6, 7}

Decide whether the following statements are true or false:
E1 B and C are disjoint.
E2 2 ∈ A.
E3 2 /∈ B.
E4 A ∩ C = B ∩ C.
E5 A ⊆ B.
E6 C ⊆ B.
E7 B ⊆ A.
Describe the following sets:
E8 A \ B.
E9 B ∩ C
E10 A ∪ B
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E11 B × C
E12 B ∪ (A ∩ C)
E13 C ∩ (A ∪ B)
E14 B \ A
E15 B ∪ ∅
E16 A ∩ ∅
E17 How many elements are there in A × C?
E18 How many elements are there in A × (B ∩ C)?
In exercises E19 to E25, let A, B and C be any sets.
E19 Is A a subset of A?
E20 Is ∅ a subset of A?
E21 Is A a subset of A × A?
E22 Is ∅ a subset of A × A?
E23 Prove that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
(There are two ways of doing this. One way is to draw the Venn diagram
of both sides and check that they are equal. The other way is to show that
any element of the left hand side must be in the right hand side, and the
other way around.)
E24 Prove that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
E25 Prove that (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B)
Determine the number of elements in the following sets:
E26 {x ∈ N | x = x2}.
E27 {a ∈ N | a < 19 and a = 2k for some k ∈ Z}.
E28 {x ∈ N | x is even and x ≤ 23}.
Answer the following questions:
E29 If set A has 2 elements, how many elements does A × A have?
E30 If the finite set A has n elements, how many elements does A×A have?
E31 If the set A has 1 elements, how many subsets does A have?
E32 If the set A has 2 elements, how many subsets does A have?

1.2 Relations

If we are given a set S, we shall be interested in relations between the
elements of the set. Let us consider the set of integers, to see some examples.
The following are relations on the set of integers:

• “a is less than or equal to b”

• “a divides b” (this will be defined later)

• “a is equal to b”

• “a has the same sign1 as b”

1Here we consider negative numbers to have a minus sign, positive numbers to have a

plus sign, and the number 0 to have a neutral sign
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When we are given a relation we can consider the set of all ordered pairs
that satisfy the relation. Take for example the first relation in the above list.
This defines a set R, in which for example (4, 14) and (5, 5) are members,
while (5, 4) and (14, 4) are not. Similarly, consider the set S of all pairs
satisfying the last relation in the list. In this case (−2,−3) and (5, 99), and
(0, 0) are all in the set S, while (1,−1) and (0, 1) are not in S. We can go
on like this, and observe that every relation on a set A determines a certain
subset of A×A. In fact, this point of view is used as the abstract definition
of a relation:

Definition 1. A relation on a set A is a subset of A × A.

If R is any relation on a set, we write a R b if the pair (a, b) belongs
to the relation. The following definitions will allow us to gain a better
understanding of relations.

Definition 2. A relation is symmetric if a R b implies b R a.
A relation is reflexive if a R a for every a.
A relation is transitive if a R b and b R c implies a R c.

Examples: the relation ≤ is reflexive and transitive, but not symmetric.
The relation = is symmetric, reflexive, and transitive.

1.2.1 Equivalence relations

We define a partition of a set S to be a collection of nonempty pairwise
disjoint subsets of S set whose union is S. Each subset in a partition is
called a cell. If we are given a partition of a set S, we can consider the
following relation: “a and b are in the same cell”. Thus every partition
determines a relation. If a is an element, we write cl(a) for the cell that
contains a.

Definition 3. An equivalence relation is a relation determined by a parti-
tion, by the rule “a and b are in the same cell”.

For example, consider the partition of the integers into the three sets of
negative numbers, positive numbers, and the set {0}. The relation deter-
mined by this partition is the last relation in the above list of examples.

Theorem 1. A relation is an equivalence relation if and only if it is sym-
metric, reflexive and transitive.

Proof. Given in lectures.
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1.2.2 Exercises

For exercises E33 to E40, let R be the relation > on the natural numbers.
Are the following statements true or false?
E33 (5, 4) ∈ R
E34 R is symmetric.
E35 (9, 9) /∈ R.
E36 R is transitive.
E37 8 R 1.
E38 R is reflexive.
E39 (2,−1) ∈ R.
E40 R is an equivalence relation.
For exercises E41 to E48, define a relation R on N by

a R b if (a − b) is an even integer

Are the following statements true or false?
E41 (5, 9) ∈ R
E42 R is reflexive.
E43 (10, 1) /∈ R.
E44 R is symmetric.
E45 7 R 4.
E46 R is transitive.
E47 (2, 2) ∈ R.
E48 R is an equivalence relation.
For exercises E49 to E55, let A = {1, 2, 3, . . . , 9, 10}. Are the following lists
of sets partitions of A?
E49 {1, 2}, {3, 5, 7, 9}, {4, 6, 8}.
E50 {a ∈ A | a is even}, {a ∈ A | a is odd}.
E51 {1, 2}, {3, 5, 7}, {2, 4, 6, 7, 8, 9, 10}.
E52 {8, 4, 2}, {9, 1, 10}, {5}, {7, 3, 6}.
E53 {1, 3, 5, 7}, {0, 2, 4, 6, 8}, {11, 10, 9}.
E54 What is the maximal possible number of cells in a partition of A?
E55 What is the minimal possible number of cells in a partition of A?

1.3 Functions

Let A and B be sets. A function f from A to B can be thought of as some
kind of rule, or machine, that assigns one element of B to each element of
A. For example, if A = B = N, there is a function which to each element
n ∈ N assigns the square n2 ∈ N. A function is sometimes called a map or
mapping. If an element b ∈ B is assigned to a ∈ A we say that a is sent to

b, or that a maps to b, and we write f(a) = b.
Now let f be a function from A to B. We can then consider the set of all
pairs (a, b) ∈ A×B such that f(a) = b. This is a subset of A×B, called the
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graph of f . The graph of a function has the following property: for every
a ∈ A there is a unique element b ∈ B such that (a, b) is in the graph. This
leads to the abstract definition of a function:

Definition 4. A function from a set A to a set B is a subset f of A×B such
that for every a ∈ A there is a unique b ∈ B such that (a, b) ∈ f . Usually
we write f(a) = b instead of (a, b) ∈ f .

If f is a function from A to B we write f : A → B. We call A the domain

of f and B the codomain of f . The set

im(f) = {b ∈ B | b = f(a) for some a ∈ A}

is called the image of f . If an element a is mapped to an element b we write
a 7→ b. The most common way of specifying a function is illustrated by the
following example, in which we take A = B = N.

f : N → N

x 7→ x2

This function, which sends each natural number to its square, can also be
described by the formula

f(x) = x2

which is perhaps more familiar.

Definition 5. Let f : A → B be a function. We say that f is injective (or
one-to-one) if f(x) = f(y) implies x = y. We say that f is surjective (or
onto) if for every b ∈ B, there is some a ∈ A such that f(a) = b. We say
that f is bijective if it is both surjective and injective.

In other words, f is surjective if im(f) equals B, and f is injective if
two different elements of A always are mapped to two different elements of
B (hence “two-to-two” would actually be a better word than “one-to-one”).
If f : A → B and g : B → C are functions, we can define a function h from
A to C by the rule h(a) = g(f(a)). This function called the composite and
is denoted by g ◦ f .

1.3.1 Exercises

For exercises E56 to E70, define

g : N → N

x 7→ x2 − x + 1

and let f : N → N be defined by f(x) = x + 2.
E56 Is f injective?

8



E57 Is f surjective?
E58 Is f bijective?
E59 What is the domain of f?
E60 What is the codomain of f?
E61 What is the image of f?
E62 Is g injective?
E63 Is g surjective?
E64 Is g bijective?
E65 What is the codomain of g?
E66 Write down some elements of im(g).
E67 Compute g ◦ f(7).
E68 Compute f ◦ g(7).
E69 Is f ◦ g injective?
E70 Is g ◦ f injective?

1.4 Problems

P1 If A has five elements and B has three elements, how many different
functions are there from A to B?
P2 Try to find a relation on some set which is reflexive and symmetric, but
not transitive.
P3 If the set A has n elements, how many subsets does A have?
P4 Is it true that the composite of two injective functions is injective?
P5 Is it true that the composite of two surjective functions is surjective?
P6 Define a function f : N → N by f(a) = “sum of the digits of a”. This
means that for example f(2) = 2, f(35) = 8 and f(18247) = 22. Let
g = f ◦ f . Answer the following questions:
(i) Compute f(669).
(ii) Is f injective?
(iii) Is f surjective?
(iv) Is f bijective?
(v) Compute g(15005).
(vi) Compute g(259781).
(vii) What is the codomain of g?
(viii) What is the domain of g?
(ix) Is g injective?
(x) Is g surjective?
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1.5 Answers and solutions

1.5.1 Exercises E1 to E70

E1 False. E2 True. E3 False. E4 True. E5 False. E6 False. E7 True. E8

{1, 3, 5}. E9 {6}. E10 {1, 2, 3, 4, 5, 6}. E11 {(2, 6), (2, 7), (4, 6), (4, 7), (6, 6), (6, 7)}.
E12 {2, 4, 6}. E13 {6}. E14 ∅. E15 {2, 4, 6}. E16 ∅. E17 12 elements.
E18 6 elements. E19 Yes. E20 Yes. E21 No. E22 Yes. E23, E24, E25

In each exercise, draw the Venn diagrams of both sets, and check that they
are equal. See the pictures. E26 2 elements. E27 5 elements.
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E28 12 elements. E29 4 elements. E30 n2 elements. E31 2 subsets.
E32 4 subsets. E33 True. E34 False. E35 True. 36 True. E37 True.
E38 False. E39 False (because −1 /∈ N). E40 False. E41 True. E42 True.
E43 True. E44 True. E45 False. 46 True. E47 True. E48 True. E49

No. E50 Yes. E51 No. E52 Yes. E53 No. E54 10 cells. E55 1 cell. E56

Yes. E57 No. E58 No. E59 N. E60 N. E61 {x ∈ N | x ≥ 2}. E62 No
(because f(0) = f(1)). E63 No (because 2 is not in the image). E64 No.
E65 N. E66 1, 3, 7, 13 (for example). E67 73. E68 45. E69 No (because
f(0) = f(1). E70 Yes.

1.5.2 Problems P1 to P6

The problems were discussed in the tutorial class. Here we just give brief
answers and some hints.
P1 Answer: 243 different functions. In general, if A has m elements and B
has n elements, then there are nm different functions from A to B.
P2 One example is the following relation on the set of integers:

a R b if |a − b| ≤ 1

Verify that this relation is reflexive and symmetric, but not transitive.
P3 Try to first answer the question for n = 1, n = 2, n = 3. Try to guess a
pattern. Then try to prove your guess.
P4 Yes.
P5 Yes.
P6 Answers: (i) 21. (ii) No. For example, f(10) = f(1). (iii) Yes. If n ∈ N
is any given number, we can consider the number

a = 111 . . . 1
︸ ︷︷ ︸

n times

Clearly, we have f(a) = n.
(iv) No. (v) 2. (vi) 5. (vii) N. (viii) N. (ix) No. (x) Yes, see problem 5
above.
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2 Elementary number theory

2.1 Introduction

Elementary number theory is concerned with properties of the integers.
Hence we shall be interested in the following sets:

• The set if integers {. . . − 2,−1, 0, 1, 2, 3, . . .}, denoted by Z

• The set of natural numbers {0, 1, 2, 3 . . .}, denoted by N

• The set of positive integers {1, 2, 3, . . .}, denoted by Z+

• The set of prime numbers {2, 3, 5, 7, 11, 13, . . .}, denoted by P

“Elementary number theory” means the part of number theory that does
not require heavy background in pure mathematics. But elementary does
not mean easy!! There are many extremely hard problems in elementary
number theory, for example the following:

Problem 1. Find all solutions to the following equation:

a(b2) = ba

where a and b are positive integers.

This problem can be solved using only some calculus and really basic
properties of the integers (such as the Fundamental Theorem of Arithmetic,
see below), but it is still a very difficult problem!
In this part of the course, we will prove most of the theorems we state, with
the aim of making you familiar with rigorous mathematical proofs. Number
theory is a good area for starting to learn about proofs, since most proofs
are short and not to hard to understand. However, we will not prove every
theorem, because of our limited time, and because I don’t want to torment
you with proofs that don’t give any particular insights. You are expected
to:

• Understand and remember the statement of every theorem

• Be able to use the theorems for computations in concrete examples,
such as the exercises of section 2.2 and 2.3 below

• For the final exam, be able to prove the theorems that are proved
in these printed lecture notes (however, if you only aim for a passing
grade, it should not be necessary to know the proofs)
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2.2 Division, factorization and prime numbers

Definition 6. Let a and b be integers. If there exists an integer m such
that b = ma, then we say that a divides b, or that a is a divisor of b, or that
b is a multiple of a, or that b is divisible by a. We write this as a|b.

For example, 5 divides 15, and 6 divides 12. In other words, 15 is a
multiple of 5 and 12 is a multiple of 6.

Example 1. List all the positive divisors of 6. Answer: 1, 2, 3, 6.

Example 2. List all the positive divisors of 11. Answer: 1, 11.

Example 3. List all the positive divisors of 32. Answer: 1, 2, 4, 8, 16, 32.

2.2.1 Prime numbers

Definition 7. Let a > 1 be an integer. We say that a is a prime number if
has exactly two positive divisors, namely 1 and a. We say that a is composite

if it is not prime.

The number 1 is neither prime nor composite.
There is a simple method for listing the prime numbers up to any given size.
This method is called Eratosthenes sieve. It goes as follows:

1. Write down the numbers 2, 3, 4, . . . as far as you like.

2. Draw a circle around the number 2, and cross out all larger multiples
of 2, that is 4, 6, 8, . . .

3. Take the smallest untouched number in the list. Draw a circle around
it, and cross out all larger multiples of it.

4. Repeat step 3 until you come to the end of the list.

5. Now all the prime numbers have a circle, and the composite numbers
are crossed.

If you try this, you will see that the first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, . . .

2.2.2 Quotient and remainder

Now let’s discuss the concepts of quotient and remainder. You have probably
seen this a very long time ago, in primary school. For example, when we
divide 17 by 5, the quotient is 3 and the remainder is 2.

Definition 8. Let a, b be positive integers. In the division a
b
, the quotient

is the largest number q such that a ≥ bq. We denote it by q or q(a, b). The
remainder is the number (a − bq), denoted by r or r(a, b).
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Example 4. In the division 10
3 , the quotient is 3, and the remainder is 1.

Hence q(10, 3) = 3 and r(10, 3) = 1.

Example 5. In the division 24
6 , the quotient is 4, and the remainder is 0.

Hence q(24, 6) = 4 and r(24, 6) = 0.

Example 6. In the division 19
5 , the quotient is 3, and the remainder is 4.

Example 7. In the division 1983
179 , the quotient is 11, and the remainder is

14.

2.2.3 GCD and LCM

Definition 9. When a and b are integers, not both zero, we write GCD(a, b)
for the greatest common divisor of a and b, that is the largest positive integer
that divides both a and b. In the case where a and b are both zero, we define
GCD(a, b) to be 0.

Example 8. GCD(15, 12) = 3. GCD(24, 42) = 6. GCD(19, 28) = 1.

Example 9. GCD(−12,−8) = 4. GCD(0, 35) = 35. GCD(−11, 0) = 11.

Definition 10. If GCD(a, b) = 1, we say that a and b are coprime.

Definition 11. When a and b are nonzero integers, we write LCM(a, b) for
the least common positive multiple of a and b, that is the smallest positive
number that has both a and b as divisors. If a or b (or both) equal zero, we
define LCM(a, b) to be zero.

Example 10. LCM(6, 7) = 42. LCM(8,−12) = 24. LCM(0, 27) = 0.

The best way of finding the GCD of two numbers is to use Euclid’s
algorithm.

Algorithm 1 (Euclid’s algorithm). Suppose that a and b are positive inte-
gers, and that we want to find GCD(a, b). The idea of Euclid’s algorithm
is to produce a decreasing sequence of positive integers, such that the last
nonzero number in the sequence is equal to GCD(a, b). We start with a and
b, and then we compute remainders.

1. Let m1 be the largest of a and b

2. Let m2 be the smaller of a and b

3. Let m3 = r(a, b).

4. Continue like this, putting mk+1 = r(mk−1,mk).

5. The last nonzero number in the sequence is GCD(a, b).
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Let’s do one example:

Example 11. Let’s compute GCD(1806, 3174). We get the following se-
quence:

m1 = 3174

m2 = 1806

m3 = r(3174, 1806) = 1368

m4 = r(1806, 1368) = 438

m5 = r(1368, 438) = 54

m6 = r(438, 54) = 6

m7 = r(54, 6) = 0

so we get GCD(1806, 3174) = 6.

The following formula is useful when computing the LCM of two in-
tegers. Since we have a method for finding GCD, we can use it to find
LCM .

Theorem 2. For any positive integers a and b, we have

GCD(a, b) · LCM(a, b) = a · b

Proof. This follows immediately from the alternative way of thinking about
GCD and LCM , discussed after the Fundamental Theorem of Arithmetic
below.

Example 12. We want to compute LCM(1254, 779). Using Euclid’s algo-
rithm, we find that GCD(1254, 779) = 19. From the above theorem, we can
compute

LCM(1254, 779) =
1254 · 779

19
= 51414

2.2.4 Factorization

Now we’ll talk about factorization of integers. You have probably seen
before that every composite number can be factored into prime numbers.
Some examples:

Example 13. 39 = 3 · 13

Example 14. 70 = 2 · 5 · 7

Example 15. 686 = 2 · 7 · 7 · 7 (we usually write this as 2 · 73)

Example 16. 3762 = 2 · 32 · 11 · 19
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There is only one way to factor an integer (up to the order of the factors).
This is one of the most important statements of Elementary number theory:

Theorem 3 (Fundamental Theorem of Arithmetic). Every positive integer
n > 1 can be written in a unique way as a product

n = pe1

1 pe2

2 · · · pek

k

where p1 < p2 < . . . < pk are primes and ei is a positive integer for every i.

Proof. The proof uses a method called induction. We will introduce this
method later, and perhaps also give the proof of this theorem, if we have
time.

More examples:

Example 17. The prime factorization of 24 is 23 · 3.

Example 18. The prime factorization of 744 is 23 · 3 · 31.

Example 19. The prime factorization of 18095 is 5 · 7 · 11 · 47.

Example 20. The prime factorization of 1862 is 2 · 72 · 19.

Of, course, to find the factorization of large numbers it is most convenient
to use a computer. If you feel that factoring integers is boring or meaningless,
you may be interested in the following: If you can find the prime factorization
of the following integer:

740375634795617128280467960974295731425931888892312890849362326389

727650340282662768919964196251178439958943305021275853701189680982

867331732731089309005525051168770632990723963807867100860969625379

34650563796359

then you will be awarded a sum of US$ 30,000 from a research institute in
the USA. Later in the course we will explain why someone would pay so
much just for a factorization of a large number.
A natural question is the following: How do we determine whether a given
number, for example 109, is prime or not? For large numbers, this is a
difficult question, but for small numbers, we can use one of two simple
methods. We can use either the Eratosthenes sieve (see above) or we can
use the following fact:

Theorem 4. If a positive integer n is composite, then it has a prime factor
p such that p ≤ √

n.
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Proof. Let p be the smallest prime factor of n. Then we have n = p · m for
some positive integer m. The number m can not be equal to 1, because that
would imply n = p, which contradicts the hypothesis that n is composite.
Any prime factor of m is at least as large as p, so we must have p ≤ m.
Hence p2 ≤ p · m, that is p2 ≤ n, which implies p ≤ √

n. We have proved
that the smallest prime factor of n is smaller than or equal to

√
n.

To check whether a given integer n is prime or not, we could check, for
each prime number smaller than n, whether p divides n or not. If no such
prime divides p, we could conclude that n is itself prime. Because of the
above theorem, it is actually sufficient to only try all prime numbers up to√

n.

Example 21. Is 109 a prime number or not? To find the answer, we must
check if 109 is divisible by some prime number smaller than

√
109 = 10.44 . . ..

These primes are 2, 3, 5, and 7. Checking shows that none of them divides
109, so the number 109 is a prime number.

Example 22. Is 437 a prime number or not? To find the answer, we must
check all primes up to

√
437 = 20.9 . . .. None of 2, 3, 5, 7, 11, 13, 17 divides

437, but we find that 19 divides 437, so it is not a prime.

2.2.5 Some basic but useful facts

Let n be a positive integer

• 2|n if and only if 2 divides the last digit of n

• 5|n if and only if 5 divides the last digit of n

• 3|n if and only if 3 divides the sum of the digits of n

• 11|n if and only if 11 divides the alternating sum of the digits of n

There are also similar rules for 7 and 13, but they are slightly more compli-
cated, and we will not need them.

Example 23. The number 32109 is not divisible by 2 or 5, since the last
digit is 9. It is divisible by 3, because the sum of the digits is 15. It is also
divisible by 11, because the alternating sum of the digits is

3 − 2 + 1 − 0 + 9 = 11

which is of course divisible by 11.
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2.2.6 Another way of thinking about GCD and LCM

Let a and b be two positive integers. Consider the set of all primes oc-
curring in the prime factorizations of these two integers. Call these primes
q1, q2, . . . qn. Then we have

a = qe1

1 · · · qen

n

and also
b = qf1

1 · · · qfn

n

for some natural numbers ei and fi. Some of these ei and fi might be zero,
for example e1 will be zero if q1 does not occur in the factorization of a.
When will it be the case that a divides b? Using the above notation, it
will be the case exactly if ei ≤ fi for each i. For example, the number
18 = 2 · 32 divides the number 252 = 22 · 32 · 7, because each exponent in the
factorization of 18 is smaller than or equal to the corresponding exponent
in the factorization of 252.
We continue to use the notation introduced above, and we want to find the
GCD and LCM of a and b. We define new numbers as follows:

gi = min(ei, fi)

mi = max(ei, fi)

(this means that mi is the largest of ei and fi, and gi is the smallest.)
With this notation, we have

GCD(a, b) = qg1

1 · · · qgn

n

and
LCM(a, b) = qm1

1 · · · qmn

n

Some examples will make this clearer.

Example 24. Take a = 1176 = 23 · 3 · 72 and b = 3276 = 22 · 32 · 7 · 13.
Then, with the above notation, we have

q1 = 2, q2 = 3, q3 = 7, q4 = 13

e1 = 3, e2 = 1, e3 = 2, e4 = 0

f1 = 2, f2 = 2, f3 = 1, f4 = 1

g1 = 2, g2 = 1, g3 = 1, g4 = 0

m1 = 3, m2 = 2, m3 = 2, m4 = 1

and we can conclude that

GCD(a, b) = 22 · 3 · 7 = 84, LCM(a, b) = 23 · 32 · 72 · 13 = 45864
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Example 25. Take a = 875 = 53 · 7 and b = 6885 = 34 · 5 · 17. Then, with
the above notation, we have

q1 = 3, q2 = 5, q3 = 7, q4 = 17

e1 = 0, e2 = 3, e3 = 1, e4 = 0

f1 = 4, f2 = 1, f3 = 0, f4 = 1

g1 = 0, g2 = 1, g3 = 0, g4 = 0

m1 = 4, m2 = 3, m3 = 1, m4 = 1

and we can conclude that

GCD(a, b) = 5, LCM(a, b) = 34 · 53 · 7 · 17 = 1204875

2.2.7 Exercises

E71 Find the quotient and the remainder in the division 31
6 .

E72 Find the quotient and the remainder in the division 399
12 .

E73 Find the quotient and the remainder in the division 504
84 .

E74 Find the prime factorization of the following integers: 9, 21, 39, 51, 53,
72, 88, 91.
E75 Find the prime factorization of the following integers: 18513, 9288,
103350.
For each of the statements E76 to E95, determine whether it is true or false:
E76 10|24
E77 24|10
E78 7|49
E79 8 is a multiple of 4
E80 11 is a multiple of 33
E81 37 is a multiple of 37
E82 18 divides 6
E83 5 is a divisor of 25
E84 6 is a divisor of 9
E85 49|7
E86 106 divides 0
E87 0 divides 106
E88 0 divides 0
E89 1 is a divisor of 12
E90 1 is a multiple of 0
E91 8 is a multiple of 1
E92 0 is a multiple of 1
E93 0 is a multiple of 129
E94 0 is a multiple of 1000
E95 27 is divisible by 9
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E96 List the positive divisors of 25.
E97 List the positive divisors of 18.
E98 List the first few positive multiples of 7.
E99 List the first few positive multiples of 23.
E100 List the multiples of 0.
E101 Use Eratosthenes sieve to list all primes smaller than 100. How many
are they?
E102 Which of the following numbers are prime: 10, 37, 51, 72, 101, 173,
309, 1002, 10235, 13273.
Compute the following quotients and remainders:
E103 q(180, 18).
E104 r(180, 18).
E105 q(99, 7).
E106 r(99, 7).
E107 q(846, 19).
E108 r(846, 19).
E109 q(3477, 2190).
E110 r(3477, 2190).
E111 q(6991, 1885).
E112 r(6991, 1885).
Compute the following:
E113 GCD(60, 90).
E114 LCM(60, 90).
E115 GCD(192, 318).
E116 LCM(192, 318).
E117 GCD(1992, 432).
E118 GCD(5005, 11011).
E119 GCD(0, 58).
E120 LCM(99, 0).
E121 GCD(0, 0).
E122 GCD(192, 318).
E123 GCD(2118, 713).
E124 Are 218 and 5444 coprime?
E125 Are 4730 and 13671 coprime?.
E126 Find GCD(79507, 5547) without using Euclid’s algorithm. You may
use the fact that 79507 = 433 and 5547 = 3 · 432.
Find the prime factorization of the following six integers:
E127 343
E128 3280
E129 4114
E130 10989
E131 2592
E132 17303
E133 Compute GCD(10989, 17303).
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2.2.8 Problems

P7 Prove that “a divides b” is a reflexive and transitive relation on Z.

Try to determine whether the following two statements are true or false.
You may begin by checking whether the statement holds or not for some
small values of n.
P8 For all n ∈ Z+, the following formula holds:

1 + 2 + 3 + . . . + n =
n(n + 1)

2

P9 Let n be an integer. Then n2 + n + 17 is always a prime number.

2.3 Ideals

We shall now discuss certain subsets of Z which are very important.

Definition 12. An ideal is a subset of Z of the following form:

{x ∈ Z | x is a multiple of m}

for some integer m. We write 〈m〉 for this ideal.

Example 26. The ideal 〈5〉 is the set

{. . . ,−10,−5, 0, 5, 10, 15, 20, . . .}

Example 27. The ideal 〈12〉 is the set

{. . . ,−24,−12, 0, 12, 24, 36, 48, . . .}

Example 28. The ideal 〈0〉 is the set {0}. This ideal is called the zero ideal.

Note that every ideal except the zero ideal is an infinite set, containing
both negative and positive numbers, and also the number zero.

Definition 13. For a nonzero ideal, we define the generator of the ideal to
be the smallest positive element of the ideal. The generator of the zero ideal
is defined to be the number 0.

Example 29. The generator of the ideal

{. . . ,−6,−3, 0, 3, 6, 9, 12, 15, . . .}

is the number 3.

Note that the generator is defined so that any ideal is the set of all
multiples of its generator.
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Theorem 5. A nonempty subset M of Z is an ideal if and only if it is closed
under subtraction. (This last condition means that whenever n and k are
in M , then (n − k) is also in M .)

Proof. Omitted.

Definition 14. Let a, b ∈ Z. A linear combination of a and b is an integer
of the form xa + yb for some x, y ∈ Z. The set of all linear combinations of
a and b is denoted by 〈a, b〉.

Example 30. Some examples of linear combinations of a and b:

2a + 3b , 10a − b , b , −a − 100b

Example 31. 8 is a linear combination of 12 and 26, because we have
8 = 5 · 12 − 2 · 26. Another example: 1 is a linear combination of 10 and 7,
because we have 1 = 5 · 10 − 7 · 7.

The set 〈a, b〉 is the set of all integers that can be reached from 0, using
only jumps of length a and b. For example, the last example shows that
making five jumps of length 12 in the positive direction and then two jumps
of length 26 in the negative direction takes us to the number 8. Similarly,
we can reach 1 by jumping five jumps of length 10 in the positive direction,
and then seven jumps of length 7 in the negative direction.

Theorem 6. Let a and b be two integers. Then the set 〈a, b〉 is an ideal.

Proof. It is enough to show that the set is closed under subtraction. So let
n and k be two elements of 〈a, b〉. Then we have

n = x1a + y1b

k = x2a + y2b

for some integers x1, x2, y1, y2. But we see that

n − k = (x1 − x2) · a + (y1 − y2) · b

which shows that (n − k) is also a linear combination of a and b. Hence we
can conclude that 〈a, b〉 is closed under subtraction.

Theorem 7. The generator of 〈a, b〉 is equal to GCD(a, b).

Proof. We consider two different cases, and use a separate argument for each
case. In the proof of Case 2, we use the following three facts:

• If d|a and d|b, then d divides every linear combination of a and b.

• If d|a and d|b, then d also divides GCD(a, b).
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• If two positive integers divide each other, then they must be equal.

Case 1: 〈a, b〉 is the zero ideal. This means that every linear combination
of a and b is equal to 0. Since a is a linear combination of a and b, we see
that a = 0. For the same reason, b = 0. So from the definition of GCD, we
see that GCD(a, b) = 0. Clearly this is equal to the generator of 〈a, b〉.
Case 2: 〈a, b〉 is not the zero ideal. Let d be the generator of 〈a, b〉.
It is a positive number. Since it is a linear combination of a and b, there
are integers x, y such that d = xa + by. By definition of GCD, the number
GCD(a, b) divides a, and it also divides b. Hence it must divide d (by the
first fact above).
The set 〈a, b〉 is the set of all multiples of the generator d. Since a and b are
elements of 〈a, b〉, both a and b are multiples of d. Therefore, (by the second
fact above), d must divide GCD(a, b). Now d and GCD(a, b) are positive
integers dividing each other, so they must be equal (third fact above).

Theorem 8 (Bezout’s theorem). Let a, b ∈ Z. Then GCD(a, b) can be
written as a linear combination of a and b.

Proof. The previous theorem shows that GCD(a, b) is an element of 〈a, b〉.

Theorem 9. The intersection of two ideals is an ideal.

(I forgot to prove this in class, but include it here for completeness.)

Proof. Let I and J be two ideals. Then they are both closed under subtrac-
tion, and they both contain the number 0. Let n and k are any elements of
the intersection I ∩ J . Then because n and k are in I, the difference (n− k)
is also an element of I. For the same reason we see that (n − k) is in J .
But this implies that (n − k) is an element of I ∩ J . Hence I ∩ J is closed
under subtraction , so it is an ideal. (It is nonempty because it contains the
number 0.)

Theorem 10. The generator of 〈a〉 ∩ 〈b〉 is equal to LCM(a, b).

Proof. Again we consider two different cases.
Case 1: At least one of a and b equals zero.

In this case one of the sets 〈a〉 and 〈b〉 (or both) is the zero ideal. Hence the
intersection 〈a〉 ∩ 〈b〉 is the zero ideal, and its generator is 0. We also have
LCM(a, b) = 0, by definition of LCM .
Case 2: a and b are both nonzero.

We know that

• 〈a〉 is the set of all multiples of a

• 〈b〉 is the set of all multiples of b
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Hence the intersection of the two ideals is the set of integers that are a
multiple of a and a multiple of b. Since LCM(a, b) has this property, it
is an element of 〈a〉 ∩ 〈b〉. We must show that LCM(a, b) is actually the
smallest positive element of 〈a〉∩〈b〉. But this follows immediately from the
definition of LCM .

Theorem 11 (“To divide is to contain”). Let a and b be integers. Then
a|b if and only if 〈a〉 ⊇ 〈b〉.

Proof. There are two things to prove.
Part 1: a|b =⇒ 〈a〉 ⊇ 〈b〉.
Suppose that a divides b. Then b = ac for some c. Hence every multiple of
b is also a multiple of a. Hence the set of all multiples of b is a subset of the
set of all multiples of a, so 〈a〉 ⊇ 〈b〉.
Part 2: 〈a〉 ⊇ 〈b〉 =⇒ a|b.
Suppose that 〈a〉 ⊇ 〈b〉. Since b is an element of 〈b〉, it must then also be an
element of 〈a〉. This means that b is a multiple of a, that is a|b.

2.3.1 Exercises

Are the following three sets examples of ideals?
E134 The set of positive integers.
E135 The set of even integers.
E136 The set of prime numbers.
E137 Write down some elements of 〈9〉.
E138 Write down some elements of 〈7〉 ∩ 〈3〉.
E139 What is the generator of 〈191〉?
E140 What is the generator of 〈6〉 ∩ 〈9〉?
E141 How many elements of the ideal 〈7〉 are positive and smaller than 55?
E142 Is 14 a linear combination of 2 and 6 ?
E143 Is 9 a linear combination of 2 and 6 ?
Compute the generators of the following ideals:
E144 〈4, 9〉
E145 〈114, 216〉
E146 〈50700, 8424〉
E147 〈4〉 ∩ 〈3〉
E148 〈16〉 ∩ 〈18〉
Use the previous exercises to answer the following questions:
E149 Is 17 a linear combination of 4 and 9?
E150 Is 18911 a linear combination of 4 and 9?
E151 Is 18 a linear combination of 114 and 216?
E152 Is 2 a linear combination of 114 and 216?
E153 Is 258 a linear combination of 114 and 216?
E154 Is 1092 a linear combination of 8424 and 50700?
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2.4 Answers and solutions

2.4.1 Exercises

E71 q = 5, r = 1
E72 q = 33, r = 3
E73 q = 6, r = 0
E74 9 = 3 · 3. 21 = 3 · 7. 39 = 3 · 13. 51 = 3 · 17. 53 = 53 (a prime number).
72 = 23 · 32. 88 = 23 · 11. 91 = 7 · 13.
E75 18513 = 32 · 112 · 17. 9288 = 23 · 33 · 43. 103350 = 2 · 3 · 52 · 13 · 53.
E76 False. E77 False. E78 True. E79 True. E80 False. E81 True. E82

False. E83 True. E84 False. E85 False. E86 True. E87 False. E88 True.
E89 True. E90 False. E91 True. E92 True. E93 True. E94 True. E95

True.
E96 1, 5, 25
E97 1, 2, 3, 6, 9, 18
E98 7, 14, 21, 28, . . .
E99 23, 46, 69, 92, . . .
E100 0 is the only multiple of 0.
E101 There are 25 such primes, namely 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
E102 Only 37, 101 and 173 are prime.
E103 10. E104 0. E105 14. E106 1. E107 44. E108 10. E109 1. E110

1287. E111 3. E112 1336. E113 30. E114 180. E115 6. E116 10176.
E117 24. E118 35856. E119 58. E120 0. E121 0. E122 6. E123 1.
E124 No
E125 Yes
E126 The answer is 432 = 1849
E127 73

E128 24 · 5 · 41
E129 2 · 112 · 17
E130 33 · 11 · 37
E131 25 · 34

E132 113 · 13
E133 11
E134 No
E135 Yes
E136 No
E137 0, 9, 18, 27, −9, −18
E138 −21, 0, 21, 42, 63, 84
E139 191
E140 18
E141 7 elements
E142 Yes
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E143 No
E144 1
E145 6
E146 156
E147 12
E148 144
E149 Yes. E150 Yes. E151 Yes. E152 No. E153 Yes. E154 Yes.

2.4.2 Problems

P7 To prove that this relation is reflexive, we must prove that a divides a
for every a. That is, we must prove that for every a, there is an integer m
such that a = ma. Obviously, the integer 1 has this property, for every a.
To prove that the relation is transitive, suppose that a|b and b|c. Then,
from the definition, there exist integers m1 and m2 such that b = m1a and
c = m2b. But this implies that

c = m2b = m2m1a

which shows that a divides c.
P8 Make a table, as we did before in class, with one column for the sum
of the first n integers, and another column for the number n(n+1)

2 . You will
see that the two columns agree for n = 1, n = 2, n = 3, n = 4 and so on. In
fact this formula is true for all n. The proof uses a method called induction,
and we will prove the formula later.
P9 Again, you can compute the value of n2 + n + 17 for small values of n.
You will see that you get a prime number for n = 0, n = 1, n = 2, n = 3,
n = 4, n = 5, n = 6, and also for small negative values of n. This might lead
us to believe that we always get a prime number. However, try the number
n = 17. Do we get a prime number in this case?
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SMA205, HOME ASSIGNMENT 1

Deadline for hand-in: Monday, Dec 4.

Please write your full name here:

and your registration number here:
︸ ︷︷ ︸

x

Let x be the four-digit number indicated. For example, if your registration
number is I20 2477 04, then x = 2477.

1. Is the following formula correct or not, for all positive integers n?

12 + 22 + . . . + n2 =
n(n + 1)(2n + 1)

6

Prove your answer! (5 marks)

2. Let a, b,∈ Z. Prove the following statement:

If a2 + b2 ≡ 0 (mod 3), then ab ≡ 0 (mod 3).

(3 marks)

3. Find the prime factorization of the number x.

Answer:
(2 marks)

27



2.5 Congruences

For this section, we think of m as a fixed positive integer.

Definition 15. We say that a is congruent to b modulo m, and we write

a ≡ b (mod m)

if m divides (a − b).

IMPORTANT NOTE: All the following statements are equivalent:

• a ≡ b (mod m)

• a and b give the same remainder when divided by m

• a can be written as b + km for some integer k

• a can be reached from b (and vice versa) by jumping only jumps of
length m

• (a − b) is an element of the ideal 〈m〉
Switching between these different formulations will help you solve most prob-
lems concerning congruence questions.

Theorem 12. The relation a ≡ b (mod m) is an equivalence relation on Z.

Proof. This should be obvious from the 2nd point above.

Congruence behave in many ways just like equality. This is very useful in
arguments with congruences. To be precise, the following rules hold. (The
proofs of these rules is not the important thing, the important thing is that
you can use the rules in calculations and arguments.)

Theorem 13 (Rules for congruences). If we have two congruences mod
m, we may add them, multiply them, and subtract them. In other words,
suppose that

a ≡ b (mod m) and c ≡ d (mod m)

Then the following holds:

a + c ≡ b + d (mod m)

ac ≡ bd (mod m)

a − c ≡ b − d (mod m)

Proof. Our hypothesis is that m divides (a − b) and m also divides (c − d).
Then m must divide (a − b) + (c − d) = (a + c) − (b + d), which gives
the first congruence. Similar easy arguments prove the second and third
congruence.
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Theorem 14 (More rules for congruences). We may multiply both sides of
a congruence by an integer, and we may raise both sides of a congruence to
a power. More precisely, suppose that a ≡ b (mod m). Then the following
holds:

na ≡ nb (mod m)

for every integer n, and
an ≡ bn (mod m)

for every positive integer n.

Proof. This follows from the previous theorem. Add the congruence a ≡ b
(mod m) to itself n times to get the na ≡ nb (mod m), and multiply it n
times to get an ≡ bn (mod m).

Theorem 15 (Cancellation law). If ac ≡ bc (mod m) and GCD(m, c) = 1,
then a ≡ b (mod m).

Proof. The first part of the hypothesis says that m|(ac − bc), that is, m
divides c(a − b). Since the second part of the hypothesis says that m has
no prime factor in common with c, we can conclude that m must divide
(a − b).

Let us now prove a few simple theorems, to show how congruences can
be used. The important thing in these examples is not the statement of the
theorem, but the method of proof, using congruences.

Theorem 16. Every odd square gives the remainder 1 when divided by 4.

Proof. (Recall that a square is an integer of the form n2 for some n. Hence
the odd squares are 1, 9, 25, 49 and so on.) If a square n2 is odd, then
clearly the number n must also be odd. This implies that n gives remainder
1 or 3 when divided by 4. We consider each of these cases.
Case of remainder 1

In this case, we have
n ≡ 1 (mod 4)

Squaring both sides gives

n2 ≡ 1 (mod 4)

which means that n2 gives remainder 1 when divided by 4.
Case of remainder 3

In this case, we have
n ≡ 3 (mod 4)

Squaring both sides gives

n2 ≡ 9 (mod 4)

and since 9 ≡ 1 (mod 4) we have n2 ≡ 1 (mod 4).
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As another illustration of the use of congruences, we prove the following
fact:

Theorem 17. Let n be a positive integer. Then 3 divides the sum of the
digits of n if and only if 3 divides n.

Proof. Suppose that the digits of n are akak−1 . . . a1a0, where 0 ≤ aj ≤ 9
for each j. (For example, if n = 924, then a2 = 9, a1 = 2 and a0 = 4.) Since
n is written in base 10, this means that

n =
k∑

j=0

aj · 10j = ak · 10k + ak−1 · 10k−1 + . . . + a1 · 10 + a0

Of course, the digit sum of n is the number

k∑

j=0

aj

The crucial step of the proof is to observe the following:

aj · 10j ≡ aj (mod 3) (1)

To prove the congruence (1), we can take the congruence

10 ≡ 1 (mod 3)

and raise each side to the power j, and then multiply both sides by aj . Now
we take the congruence (1) and sum it over all j. This gives us

k∑

j=0

aj · 10j ≡
k∑

j=0

aj (mod 3)

This is the same as

n ≡
k∑

j=0

aj (mod 3)

which means that n is congruent to the digit sum of n, mod 3. This implies
that n is divisible by 3 if and only if its digit sum is divisible by 3.

Now let us prove two important theorems about existence of solutions
to certain congruences.

Theorem 18. Let a, b be two integers. Consider the congruence

ax ≡ b (mod m)

This congruence is solvable (i.e. their exists an integer x satisfying the
congruence) if and only if b is a multiple of GCD(a,m).
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Proof. First we assume that their exists an x satisfying the congruence.
Then (b − ax) is a multiple of m. This implies

b − ax = km

for some integer k. This implies b = ax+km, so b is a linear combination of
m and a. Hence b ∈ 〈a,m〉, which implies that b is a multiple of GCD(a,m).
Now we have to prove the converse. Assume that b is a multiple of GCD(a,m).
Then b ∈ 〈a,m〉, so

b = ax + my

for some integers x and y. For this particular x, we see that b − ax is a
multiple of m, so x satisfies the congruence of the theorem.

Theorem 19 (Chinese remainder theorem). Let a, b ∈ Z, and let m and n
be positive coprime integers. Then there exists z ∈ Z such that

z ≡ a (mod m)

z ≡ b (mod n)

Proof. Since n and m are coprime, we have 〈m,n〉 = Z. In other words,
every integer is a linear combination of m and n. Hence there are some
integers x and y such that

a − b = xm + yn

Now let z = a − xm. This implies z = b + yn. Now it is obvious that z
satisfies the two congruences in the theorem.

The last theorem of this section is a useful fact about primes.

Theorem 20. A prime p > 3 gives remainder 1 or 5 when divided by 6.

Proof. If we divide an integer by 6, the remainder is 0, 1, 2, 3, 4, or 5.
Suppose p is prime and greater than 3. Clearly p cannot be even, so the
remainder of p when divided by 6 cannot be 0, 2, or 4. Also, the remainder
cannot be 3, since this would imply that p is divisible by 3, and hence not
prime. Therefore the remainder must be 1 or 5.

2.5.1 Exercises

For each of the statements E155 to E169, determine whether it is true or
false:
E155 3 ≡ −3 (mod 5)
E156 12 ≡ 24 (mod 24)
E157 0 ≡ 0 (mod 8)
E158 9 ≡ 30 (mod 7)
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E159 31 ≡ −26 (mod 5)
E160 6 ≡ 132 (mod 12)
E161 Every integer n can be written either as 2k or as 2k + 1 for some
integer k.
E162 If n ≡ 3 (mod 5), then n3 ≡ 4 (mod 5).
E163 If a ≡ b (mod 16), then a ≡ b (mod 8).
E164 If a ≡ b (mod 5), then a ≡ b (mod 10).
E165 If a ≡ b (mod m), then −a ≡ −b (mod m).
E166 If x ≡ 3 (mod m), then x + 4 ≡ 7 (mod m).
E167 If a ≡ b (mod m), then a2 ≡ b3 (mod m).
E168 If 2x ≡ 6 (mod 4), then x ≡ 3 (mod 4).
E169 If 3a ≡ 3b (mod 7), then a ≡ b (mod 7).
E170 What remainders can you get when dividing a square by 3?
E171 What remainders can you get when dividing a square by 5?
E172 Is the congruence 2x ≡ 7 (mod 3) solvable? If yes, can you find such
an x?
E173 Is the congruence 8x ≡ 6 (mod 12) solvable? If yes, can you find such
an x?
E174 Is the congruence 9x ≡ 2 (mod 6) solvable? If yes, can you find such
an x?
E175 Is the congruence 3x ≡ 5 (mod 8) solvable? If yes, can you find such
an x?
E176 Is there an integer which gives the remainder 2 when divided by 5
and the remainder 3 when divided by 7? If yes, find such an integer.
E177 Is there an integer which gives the remainder 1 when divided by 10
and the remainder 8 when divided by 9? If yes, find such an integer.
E178 Is there an integer which gives the remainder 2 when divided by 6
and the remainder 3 when divided by 4? If yes, find such an integer.

2.5.2 Problems

P10 Find all prime numbers such that p2 + 2 is also a prime number.
P11 Let n be a positive integer. Prove that n is congruent to the alternating
digit sum of n, mod 11.
P12 Prove that if p > 3 is a prime, then 24|(p2 − 1).
P13 Find an integer x such that 38x ≡ 5 (mod 17).
P14 Is there a positive integer n such that

n2 ≡ n (mod p)

for every prime number p?
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2.6 Induction proofs

An important method of proof, which is useful both in number theory and
in many other parts of mathematics, is the method of induction. It can often
be used to prove that a certain statement holds for all positive integers n.
Let S(n) denote a statement about the integer n. For example, S(n) could
be any of the following statements:

• n is a prime number

• ∑n
k=1 k = n(n+1)

2

• (52n−1 + 1) is divisible by 6

• (n2 + n + 17) is a prime number

• A set with n elements has 2n subsets

• n can be written as the sum of at most three prime numbers

Consider the first of these examples. In this case, S(2) is a true statement,
while S(4) is a false statement. What do you think about the other state-
ments? Are they true for all positive integers n, or only for some positive
integers n, or perhaps false for all positive integers n?
If a statement is true for all positive integers n, one way of proving it might
be by induction. The idea of an induction proof is the following: Let S(n)
be the statement to be proved for all positive integers n.

1. Prove that S(1) is true (Base step)

2. Prove that S(n) implies S(n + 1) (Induction step)

If we can prove both of these steps, we may conclude that S(n) is true for
all positive integers n (this is called the Principle of Induction).
In most cases, the base step is the easy part and the induction step is
the complicated part. However, you must never forget to do both steps,
otherwise the proof is not valid! Let us now prove a few theorems to show
how induction proofs work.

Theorem 21. For all positive integers n, the integer (52n−1 +1) is divisible
by 6.

Proof. We proceed by induction. The statement S(n) is the statement of
the theorem.
Base step: We compute, for n = 1:

52n−1 + 1 = 6

The statement S(1) therefore says that 6 is divisible by 6, which is of course
true.
Induction step: Assume that S(n) is true. The statement S(n + 1), that
we must prove, says the following:
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52(n+1)−1 + 1 is divisible by 6.

Since 2(n + 1) − 1 is equal to (2n + 1), we must prove that

52n+1 + 1 is divisible by 6.

How can be prove this? We must use the statement S(n), which we assume
to be true. Reformulating in terms of congruences, S(n) says that

52n−1 ≡ −1 (mod 6)

Multiplying both sides by 25, we get

52n+1 ≡ −25 (mod 6)

and since −25 ≡ −1 (mod 6), we can conclude that

52n+1 ≡ −1 (mod 6)

which implies that S(n + 1) is true.
By the Principle of Induction we now know that S(n) is true for all positive
integers n.

Theorem 22. Let n be a positive integer. The sum of the first n positive
integers is equal to n(n+1)

2 .

Proof. The statement S(n) to be proved is the following statement:

n∑

k=1

k =
n(n + 1)

2

The statement S(n + 1) is the following:

n+1∑

k=1

k =
(n + 1)(n + 2)

2

Let’s proceed by induction.
Base step: Consider the statement S(n) for n = 1. In this case, we have

n∑

k=1

k = 1

and
n(n + 1)

2
= 1
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so the statement S(1) is true.
Induction step: Assume that the statement S(n) is true. We must use
this to prove S(n + 1). The statement S(n) says

n∑

k=1

k =
n(n + 1)

2

Now add (n + 1) to both sides of this equality. We get

(
n∑

k=1

k
)

+ (n + 1) =
n(n + 1)

2
+ (n + 1)

which is the same as
n+1∑

k=1

k =
n2

2
+

n

2
+ n + 1

But the right hand side of this equality is equal to (n+1)(n+2)
2 (check this!)

which means that we have proved the statement S(n + 1).
Now the Principle of Induction allows us to conclude that S(n) is true for
all n.

Theorem 23. If A is a set with n elements, then A has 2n subsets.

Proof. Recall that we proved the following lemma in the lectures (we omit
this proof here, as the important point is the induction proof):

Lemma 1. Let the finite set A have one more element than the set B. Then
A has twice as many subsets as B.

Let us now the induction proof. The statement S(n) is the statement of
the theorem.
Base step: The statement S(1) is true, because a set A with one element
has exactly two subsets: the empty set and the set A itself.
Induction step: Assume that S(n) is true. This means that a set with n
elements has 2n subsets. By the lemma we can see that a set with (n + 1)
elements has 2·2n subsets, that is 2n+1 subsets. Hence the statement S(n+1)
is also true.
Now the Principle of Induction allows us to conclude that S(n) is true for
all positive integers n.

Let us again summarize the method of induction:

• In the base step, we prove that S(1) is true

• In the induction step, we assume that S(n) is true, and use this to
prove that S(n + 1) is true
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2.6.1 Exercises

E179 Prove that 23n ≡ 1 (mod 7) for every positive integer n.
E180 Prove that 3n ≡ 3 (mod 6) for every positive integer n.

2.6.2 Problems

P15 Try to find a formula for the sum of the first n odd numbers.

For the last two problems, we define the Fibonacci numbers as follows:

F1 = 1

F2 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2

We can easily compute F3 = 2, F4 = 3, F5 = 5, F6 = 8 and so on.
P16 Prove that F3n is even for every n. (In other words, prove that F3, F6,
F9 and so on are all even.)
P17 Prove that

FnFn+2 + (−1)n = F 2
n+1

for all positive integers n.

2.7 The Euler ϕ function

In general, a function defined on the positive integers (i.e. with Z+ as the
domain) is usually called an arithmetic function. There are many interesting
and useful arithmetic functions, but in this course we shall only have time
to look at one.

Definition 16. For any positive integer n, we define ϕ(n) to be the number
of elements in the set {1, 2, . . . , n} that are coprime to n.

Example 32. Among the numbers 1, 2, 3, 4, only the number 1 and 3 are
coprime to 4. Hence ϕ(4) = 2.

Example 33. Among the numbers 1, 2, 3, 4, 5, 6, 7, every number except
7 is coprime to 7. Hence ϕ(7) = 6.

Theorem 24. If the prime factorization of n is pe1

1 pe2

2 · · · per

r , then the fol-
lowing formula holds:

ϕ(n) = n ·
r∏

i=1

(

1 − 1

pi

)

Proof. Omitted.

We will not need the above general formula (and you don’t have to
remember it for the exam), but we shall need the following two special cases
(which you must remember).
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Corollary 1. If p is a prime number, then ϕ(p) = p − 1. If p and q are
different prime numbers, and n = pq, then ϕ(n) = (p − 1)(q − 1).

Proof. This follows from the general formula.

Example 34. Using the corollary, we can compute that

ϕ(11) = 10

ϕ(29) = 28

ϕ(15) = 2 · 4 = 8

ϕ(35) = 24

ϕ(22) = 10

Theorem 25 (Euler’s theorem). Let n ≥ 2 be an integer, and let a be a
positive integer coprime to n. Then the following congruence holds:

aϕ(n) ≡ 1 (mod n)

Proof. This will be proved later, using a general theorem in group theory.

Theorem 26 (Fermat’s little theorem). If p is a prime number, and a is a
positive integer, then

ap ≡ a (mod p)

Proof. We consider two cases.
Case 1: p divides a.
In this case, a ≡ 0 (mod p). Hence ap ≡ 0 (mod p), so the theorem is true
in this case.
Case 2: p does not divide a.
We know that φ(p) = p − 1. Since a is coprime to p, we may apply Euler’s
theorem (with n = p) to get the following congruence:

ap−1 ≡ 1 (mod p)

Multiplying both sides by a proves the theorem also in the second case.

Example 35. These two theorems are of great help when dealing with con-
gruences mod a prime number. Consider for example the following question:

What is the remainder of 422 when divided by 7?

Since 422 is a very large number, the question looks difficult. But Fermat’s
little theorem tells us that

47 ≡ 4 (mod 7)
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Raising both sides to the power 3 gives us

421 ≡ 43 (mod 7)

and multiplying both sides by 4 gives

422 ≡ 44 (mod 7)

Since 44 = 256, and the number 256 gives remainder 4 when divided by 7,
we can conclude that 422 also gives remainder 4.

2.7.1 Exercises

Compute the following, using either the definition of ϕ or the general for-
mulae:
E181 ϕ(16)
E182 ϕ(77)
E183 ϕ(12)
E184 ϕ(21)
E185 ϕ(39)
E186 ϕ(19)
E187 Prove that 262 ≡ 4 (mod 77).
E188 Prove that 825 ≡ 8 (mod 39).
E189 Prove that (521 − 125) is a multiple of 19.
E190 Prove that if p is a prime number, then

ap2 ≡ a (mod p)

for every positive integer a.
E191 Find the remainder when 689 is divided by 11.
E192 Find the last digit of the integer 7401.
E193 Find the remainder when 3 · (556) is divided by 8.

2.7.2 Problems

P18 Let a and b be positive integers, and let p be a prime number. Prove
that

(a + b)p ≡ ap + bp (mod p)

P19 Let p be an odd prime number. Prove that the sum

1p + 2p + . . . + (p − 1)p

is divisible by p.
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2.8 Arithmetic mod n

For any integer n ≥ 2, we introduce the set

Zn = {0, 1, . . . , n − 1}

For example, Z2 = {0, 1} and Z5 = {0, 1, 2, 3, 4}. The elements of Zn can
be added, subtracted and multiplied according to the following rule (we say
that the arithmetic operations are performed mod n):

Perform the operation (addition, subtraction or multiplication)
in the usual way to get some number M , and then replace M by
the unique element of Zn that is congruent to M mod n.

The set Zn is an example of an algebraic structure called a ring.

Example 36. In the ring Z6, the following is true:

2 + 3 = 5

3 + 4 = 1

5 + 5 = 4

3 − 4 = 5

0 − 4 = 2

5 − 1 = 4

4 · 2 = 2

2 · 3 = 0

3 · 3 = 3

5 · 5 = 1

Example 37. In the ring Z13, the following is true:

8 + 7 = 2

1 + 12 = 0

4 − 6 = 11

1 − 12 = 2

5 · 8 = 1

4 · 2 = 8

2 · 11 = 9

For any integer n ≥ 2, we also introduce the set

Z∗

n = {k ∈ Zn | k is coprime to n}

39



Examples:

Z∗

4 = {1, 3}
Z∗

6 = {1, 5}
Z∗

11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Z∗

8 = {1, 3, 5, 7}
Z∗

9 = {1, 2, 4, 5, 7, 8}

Note that the number of elements in Z∗

n is equal to ϕ(n). The elements of
Z∗

n can be multiplied, by the same rule as above. However, if you try to add
or subtract, it will not work, because you sometimes will get a result that is
not in Z∗

n. For example, 2 + 4 doesn’t make sense in Z∗

9. The set Z∗

n is an
example of a group.

Example 38. In the group Z∗

9, the following is true:

5 · 2 = 1

4 · 8 = 5

2 · 2 = 4

Example 39. In the group Z∗

8, the following is true:

1 · 5 = 5

3 · 3 = 1

5 · 5 = 1

7 · 7 = 1

5 · 7 = 3

We make the following definition:

Definition 17. Let x be an element of the group Z∗

n. We define the order

of x to be the smallest positive integer k with the property that xk = 1.

Example 40. We compute the order of 2 in the group Z∗

9.

22 = 4

23 = 8

24 = 7

25 = 5

26 = 1

so the order of 2 is 6.
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Example 41. We compute the order of 4 in the group Z∗

5.

42 = 1

so the order of 4 is 2.

Example 42. In any group Z∗

n, the order of 1 is 1.

Example 43. From the calculations in Example 39 above, we see that every
element in Z∗

8 (except the element 1) has order 2.

In the ring Zn we can solve equations, just as we usually do with ordinary
numbers. The general way of solving any such equation is to check all

possible values of x, to see which ones satisfy the equation.

Example 44. Solve the equation

x + 6 = 2

in the ring Z8.
Solution: x = 4. This can be seen either by adding 2 to both sides of the
equation, or by trying all possible values of x (that is 0, 1, 2, 3, 4, 5, 6, 7)
to see that 4 is the only solution.

Example 45. Solve the equation

3x + 5 = 1

in the ring Z5.
Solution: Try all possible values of x. You will find that the only solution
is x = 2.

Example 46. Solve the equation

x2 = 1

in the ring Z8.
Solution: Try all possible values of x. You will find that there are four
solutions: x = 1, x = 3, x = 5 and x = 7.

Example 47. Solve the equation

x2 = 3

in the ring Z7.
Solution: Try all possible values. You will see that there are no solutions.
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2.8.1 Exercises

Compute in the ring Z12

E194 3 · 7
E195 3 · 8
E196 2 · 7
E197 5 · 5
E198 10 · 1
E199 3 + 11
E200 3 − 11
E201 0 − 1
E202 6 + 7
Compute in the ring Z5

E203 3 · 2
E204 4 − 4
E205 1 − 4
E206 4 · 4
Solve the following equations in the ring Z9

E207 x − 6 = 7
E208 8x − 3 = 2
E209 x2 + 3 = 1
E210 x2 = 0
Solve the following equations in the ring Z5

E211 x2 = 1
E212 x − 3 = 2
E213 x2 = 3
E214 x2 + x = 0
E215 x3 = 2
E216 Compute the order of 5 in the group Z7.
E217 Compute the order of 2 in the group Z11.
E218 Compute the order of 14 in the group Z15.

2.8.2 Problems

P20 Consider the function

f : Z5 → Z5

x 7→ 4x

Is f injective? Is f surjective? Is f bijective?
P21 Consider the function

g : Z10 → Z10

x 7→ 4x

Is g injective? Is g surjective? Is g bijective?
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2.9 Answers and solutions

2.9.1 Exercises

E155 False. E156 False. E157 True. E158 True. E159 False. E160

False. E161 True. (If n is even, then n = 2k for some k, and if n is odd,
then n = 2k − 1 for some k.) E162 False. (It should be n3 ≡ 2 (mod 5).)
E163 True. (Since 8|16 and 16|(a − b), we can conclude that 8|(a − b).)
E164 False. (For example, 1 is congruent to 6 mod 5, but not mod 10.)
E165 True. (Multiply both sides by (-1).) E166 True. (Add 4 to both
sides.) E167 False. (You cannot raise one side to 2 and the other side to 3.)
E168 False. (You cannot cancel 2 from both sides, because 2 is not coprime
to 4.) E169 True. (Because 3 is coprime to 7.) E170 0 and 1. E171 0, 1
and 4. E172 Yes, because GCD(2, 3) divides 7. One solution is x = 2, but
there are many other solutions also. E173 No, because GCD(8, 12) does
not divide 6. E174 No, because GCD(9, 6) does not divide 2. E175 Yes,
because GCD(3, 8) divides 5. One solution is x = 7, but there are many
other solutions also. E176 Yes, by the Chinese Remainder Theorem. One
solution is 17. E177 Yes, by the Chinese Remainder Theorem. One solution
is 71. (The positive integers congruent to 8 mod 9 are the numbers 8, 17,
26, 35, 44 and so on. Check each number in this list until you find one that
gives remainder 1 when divided by 10.) E178 Here we cannot apply the
Chinese Remainder Theorem, because 4 and 6 are not coprime. If such a
number existed it would have to be both even and odd, which is of course
impossible. So the answer is no.
E179 Base step: S(1) is the statement 1 ≡ 8 (mod 7), which is true.
Induction step: We assume that

23n ≡ 1 (mod 7)

Multiply both sides by 23. This gives

23(n+1) ≡ 8 (mod 7)

and since 8 ≡ 1 (mod 7), this completes the induction step.
E180 Base step: S(1) is the statement 3 ≡ 3 (mod 6), which is true.
Induction step: We assume that

3n ≡ 3 (mod 6)

Multiply both sides by 3. We get

3n+1 ≡ 9 (mod 6)

and since 9 ≡ 3 (mod 6), we have proved the statement S(n + 1).
E181 8. E182 60. E183 4. E184 12. E185 24. E186 18.
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E187 Euler’s theorem (with n = 77 and a = 2) says that

260 ≡ 1 (mod 77)

Multiply both sides by 4.
E188 Euler’s theorem (with n = 39 and a = 8) says that

824 ≡ 1 (mod 39)

Multiply both sides by 8.
E189 Euler’s theorem (with n = 19 and a = 5) says that

518 ≡ 1 (mod 19)

Multiply both sides by 125. This gives

521 ≡ 125 (mod 19)

in other words, (521 − 125) is a multiple of 19.
E190 Fermat’s little theorem says

ap ≡ a (mod p)

Raising both sides to p gives

ap2 ≡ ap (mod p)

and combining these two congruences shows the desired result.
E191 Euler’s theorem (with n = 11 and a = 6) says that

610 ≡ 1 (mod 11)

Raise both sides to 9 to get

690 ≡ 1 (mod 11)

Since 1 ≡ 12 (mod 11), we also have

690 ≡ 12 (mod 11)

Since 6 is coprime to 11, we may cancel 6 on both sides. This gives

689 ≡ 2 (mod 11)

so the answer is 2.
E192 The last digit is the same thing as the remainder when divided by 10.
Euler’s theorem (with n = 10 and a = 7) says that

74 ≡ 1 (mod 10)
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Raise both sides to 100. We get

7400 ≡ 1 (mod 10)

Multiply both sides by 7. We see that the answer is 7.
E193 Euler’s theorem (with n = 8 and a = 5) says that

54 ≡ 1 (mod 8)

Raise both sides to 14. This gives

556 ≡ 1 (mod 8)

Now multiply both sides by 3. We get

3 · 556 ≡ 3 (mod 8)

so the answer is 3.
E194 9. E195 0. E196 2. E197 1. E198 10. E199 2. E200 4. E201 11.
E202 1. E203 1. E204 0. E205 2. E206 1. E207 x = 4. E208 x = 4.
E209 x = 4 and x = 5. E210 x = 0, x = 3 and x = 6. E211 x = 1 and
x = 4. E212 x = 0. E213 No solutions. E214 x = 0 and x = 4. E215

x = 3. E216 6. E217 10. E218 2.
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2.9.2 Problems

P10 Try small prime numbers first.
p p2 + 2

2 6
3 11
5 27
7 51
11 123

Among the primes in this table, only the prime 3 has the property that
(p2 + 2) is also a prime. We try to prove that no other primes has this
property. The only thing we have learnt about primes in this section is
Theorem 20. We have checked the primes 2 and 3 in the table, so we can
assume p ≥ 5, and we only have to consider the two cases of congruence
mod 6 in the theorem.
Case 1: p ≡ 1 (mod 6). Raising both sides to 2 gives

p2 ≡ 1 (mod 6)

Adding 2 to both sides gives

p2 + 2 ≡ 3 (mod 6)

so p2 + 2 must be divisible by 3, and hence it is not a prime.
Case 2: p ≡ 5 (mod 6). Exactly the same argument shows that (p2 + 2) is
again divisible by 3, so it is not a prime.
Hence 3 is the only prime such that (p2 + 2) is also prime.
P11 Just as in the case treated in the text, we can write

n =

k∑

j=0

aj · 10j

The alternating digit sum is

k∑

j=0

(−1)jaj = a0 − a1 + a2 − . . .

If j is even, then
aj ≡ aj · 10j (mod 11)

and if n is odd, we have

−aj ≡ aj · 10j (mod 11)

Adding these congruences for all j shows that n is congruent to its alternat-
ing digit sum, mod 11.
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P12 We use Theorem 20.
Case 1: p gives remainder 1 when divided by 6.
In this case we have

p = 6q + 1

where q is the quotient on division by 6. This implies

p2 − 1 = 36q2 + 12q = 12q(3q + 1)

If q is even, then clearly 12q is divisible by 24, so (p2 − 1) is also divisible by
24. If q is odd, then (3q + 1) is even, so 12(3q + 1) is divisible by 24. Hence
(p2 − 1) is divisible by 24 also in this case.
Case 2: p gives remainder 5 when divided by 6.
Now we can write

p = 6q + 5

and use a similar argument as in Case 1.
P13 Since we always have the congruence

38x ≡ 4x (mod 17)

the Problem is the same as finding a solution to

4x ≡ 5 (mod 17)

The positive integers congruent to 5 mod 17 are:

5, 22, 39, 56 . . .

Since 56 = 4 · 14, we can take x = 14.
P14 Suppose there exists such a positive integer n. Let

m = n2 − n

The condition in the problem is the same as saying that every prime number
p divides m. This can happen only if m = 0, that is, only if n = 1. Hence
n = 1 is the only positive integer with the given property.
P15 We try to find a pattern.

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

It seems like the sum of the first n odd numbers is equal to n2, and we guess
that this is always true. The kth odd number is (2k − 1), so our guess says
that

n∑

k=1

(2k − 1) = n2
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We could prove it by induction, as before, but here we give an alternative
solution, using Theorem 22, which we have already proved.
We compute, using basic properties of summation:

n∑

k=1

(2k − 1) = 2 ·
n∑

k=1

k −
n∑

k=1

1

= 2 · n(n + 1)

2
− n

= n2 + n − n

= n2

which proves our guess.
P16 We let S(n) be the statement

“F3n is even”

Base step: Since F3 = 2, the statement S(1) is true.
Induction step: We assume that S(n) is true, in other words that F3n is
even. We have

F3n+1 = F3n + F3n−1

F3n+2 = F3n+1 + F3n = 2F3n + F3n−1

F3n+3 = F3n+2 + F3n+1 = 3F3n + 2F3n−1

(The second line is obtained using the definition of F3n+1, and the last
equality is obtained by adding the first two equations.) Beacuse F3n is even,
and 2F3n−1 is even, we can conclude that

3F3n + 2F3n−1

also is even. In other words, S(n + 1) is true. This completes the induction
proof.
P17 We let S(n) be the formula to be proved.
Base step: Since F1 = 1, F2 = 1, and F3 = 2, the statement S(1) is true.
Induction step: We assume that S(n) is true, in other words that

FnFn+2 + (−1)n = F 2
n+1

We add [(−1)n+1 + Fn+1Fn+2] to both sides. This gives

FnFn+2 + Fn+1Fn+2 = F 2
n+1 + Fn+1Fn+2 + (−1)n+1

(Here we have used that (−1)n + (−1)n+1 = 0.)
This equation can be rewritten as

(Fn + Fn+1) · Fn+2 = Fn+1(Fn+1 + Fn+2) + (−1)n+1
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and this implies
F 2

n+2 = Fn+1Fn+3 + (−1)n+1

which means that we have proved the statement S(n + 1). This completes
the induction proof.
P18 By Fermat’s theorem, we have

ap ≡ a (mod p)

and
bp ≡ b (mod p)

Adding these two congruences gives

ap + bp ≡ a + b (mod p)

But Fermat’s theorem also says

(a + b)p ≡ a + b (mod p)

which proves the desired congruence.
P19 We let

m = 1p + 2p + . . . + (p − 1)p

By Fermat’s last theorem

1 ≡ 1p (mod p)

2 ≡ 2p (mod p)

3 ≡ 3p (mod p)

and so on. Adding all these congruences shows that

1 + 2 + . . . + (p − 1) ≡ m (mod p)

By Theorem 22, we know that

1 + 2 + . . . + (p − 1) =
p − 1

2
· p

Since p is odd, the number p−1
2 is an integer, so the above equation shows

that the sum
1 + 2 + . . . + (p − 1)

is a congruent to 0 mod p. Hence m is also congruent to 0 mod p.
P20 We compute all values of f and collect them in a table:
x f(x)

0 0
1 4
2 3
3 2
4 1
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From the table, it is clear that f is injective and surjective. Hence it is also
bijective.
P21 We compute all values of g and collect them in a table:
x f(x)

0 0
1 4
2 8
3 2
4 6
5 0
6 4
7 8
8 2
9 6

Now it is clear that g is NOT injective (for example, g(0) = g(5)). It is
also clear that g is NOT surjective (for example, 1 is not in the image).
Therefore, g is also not bijective.
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3 Proofs

We have on several occasions in the lectures discussed various kinds of proofs.
Let us summarize these discussions, and also add a few things. Hopefully
this will help you to prove things in the exam, and to understand the proofs
given in the course. I also hope it will help you to understand books in pure
mathematics in the future.

3.1 Theorems

In mathematics, the word “Theorem” means “true statement”. We have
seen many examples in the course. Sometimes we use a different word, as
we have seen on a few occasions. Here are the words that are in common use
in mathematical literature. We could (as we have done almost everywhere
in these notes) use the word Theorem for all true statements, but the use
of different words can help us to understand the structure of a chapter or
a research paper, and to know what statements are more important than
others.

• Lemma A lemma is a “small” theorem, that we want to use to prove
a more important theorem later. Usually, the lemma is not really
interesting in itself. Most lemmas have very short proofs. Sometimes,
one proves several lemmas, and then uses all of them to prove an
important theorem.

• Corollary A corollary is a theorem that follows immediately from a
theorem we already have proved, for example by applying the theorem
to a particular situation. For example, in these notes, Bezout’s the-
orem (Theorem 8) can be regarded as a corollary to Theorem 7 (see
page 23).

• Proposition A proposition is a theorem that is of interest in itself,
but it is still not a major, very important theorem.

• Theorem In many textbooks, the word Theorem is used only for
statements that are of a major importance.

• Fact In any serious textbook in pure mathematics, any theorem/lemma/
proposition/corollary should be followed by a proof. Many authors
use the word Fact when they for some reason want to state a theorem
without giving the proof.

3.2 Proofs

A proof is a correct argument that shows that a certain statement must be
true. Whenever we state a theorem, we should also give a proof to justify
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our claim that the statement is true.
In a proof you are free to use anything you know is true, such as

• Obvious facts

• Theorems that are already proved

• The definitions of the concepts involved in the theorem

For example, in the proof of Theorem 7, we used the obvious fact that if two
positive integers divide each other, then they are equal. We also used the
definition of GCD, the definition of linear combination, and the definition
of generator. To prove Theorem 5, we used Theorem 6.

Suppose we have defined a concept, for example prime number, or ideal,
or the Euler ϕ-function. To prove something about this concept, we MUST
use either the definition, or something we have already proved about the
concept. Just after we defined a concept we know nothing about that con-
cept except the definition.

It is common practice to indicate the end of a proof either by a small
square, as in these notes, or by the letters QED, which is an abbreviation of
the Latin expression quod erat demonstrandum (“which was to be proved”).

Many times in this course (including in the exam!), and also in future
courses in pure mathematics, you will be asked to prove something. We
shall look at a few common types of theorems, and discuss what kinds of
proof can be suitable in these various situations.

3.3 Different kinds of theorems

It is impossible to list all kinds of theorems that occur in mathematics. And
it is “even more impossible” to list all kinds of proofs. However, we can
list a few of the most common kinds of theorems, and discuss some basic
methods of proof.

3.3.1 If “hypotheses” then “conclusion”

This is perhaps the most common type of theorem. We are given some
assumptions, (called the “hypothesis”) and are asked to prove some conse-
quence of the assumptions (a “conclusion”). In other words, we are asked
to prove that the hypotheses implies the conclusion. For example, we have
the following very simple theorem: If n is an odd integer, then n2 is also
odd. Here the hypothesis is “n is an odd integer” and the conclusion is “n2

is odd”. To prove a theorem of this kind, the following steps may help:
Step 1: Identify and write down the hypotheses. These are the assumptions
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that we start with.
Step 2: Identify and write down the conclusion. This is what we are asked
to prove.
Step 3: Identify and write down the definitions of the terms involved in the
theorem. These definitions will probably be used in the proof.
Step 4: Try to think about consequences of the hypothesis. For example,
if the hypothesis is that “p is a prime number”, then there are the following
consequences:

• The only positive divisors of p are 1 and p.

• p is either equal to 2, equal to 3, congruent to 1 mod 6, or congruent
to 5 mod 6.

• ϕ(p) = p − 1

• ap ≡ a (mod p) for any positive integer a.

Step 5: Try to think about theorems that seem related to the statement
you are asked to prove. For example, if you are asked to prove something
involving a congruence, you know about the following theorems:

• The rules for congruences (Theorems 13, 14, 15)

• The five equivalent formulations of congruence (page 28)

• Euler’s theorem and Fermat’s theorem

• Congruence mod m is an equivalence relation

• A criterion for solvability of linear congruences (Theorem 18)

• The Chinese Remainder Theorem (Theorem 19)

Can you combine any of these theorems with the hypotheses to get some-
where?
Step 6: With the help of the previous points, try to find an argument which
starts with the hypothesis, and from there proves that the conclusion must
be true.

Example 48. Theorem: For every integer n ≥ 4, we have the inequality
2n ≥ n2. Here the hypothesis is “n is an integer greater than or equal to 4”.
The conclusion is “2n ≥ n2”.

Example 49. Theorem: If a divides b and b divides c, then a divides c.
Here the hypothesis is “a divides b and b divides c”, and the conclusion is
“a divides c”.

IMPORTANT: You must never start by assuming that the conclusion is
true! Also, you may never use a hypothesis that is not stated in the theorem.
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3.3.2 Statement 1 is equivalent to Statement 2

With this kind of statement, we are asked to prove that one statement is
true if and only if another statement is true. For example, see Theorem 11.
To do this we must

• Prove that Statement 1 implies Statement 2

• Prove that Statement 2 implies Statement 1

For each of these points, you can use the ideas above. In the first point, you
treat Statement 1 as the hypothesis, and Statement 2 as the conclusion. In
the second point, you reverse the roles of the statements.

3.4 Some general methods of proof

Not all theorems are of the forms mentioned above. There are a few general
strategies that often can be used to prove things, regardless of what kind of
theorem we are dealing with. Here are some examples:

3.4.1 Proof by cases

In many situations, it might be useful to distinguish between separate cases,
and give a separate proof for each case. We have seen the following examples:

• In Theorem 7, we had to prove something about an ideal. We consid-
ered the case of the zero ideal, and the case of a nonzero ideal, and
gave different proofs for the two cases.

• In Theorem 16, we wanted to prove something about odd integers. We
considered the case where the integer is congruent to 1 mod 4, and the
case where the integer is congruent to 3 mod 4.

• In proving Fermat’s little theorem, we considered the case where p|a
and the case where p - a.

In elementary number theory, it is very often useful to consider the various
possible cases of remainder mod m, for some number m. For example, we
could consider the cases of odd numbers and even numbers.

The method of proof by cases can be thought of as a method to gain
more information than was originally given in the statement of the theorem.
For example, it might be hard to prove a statement about a general integer
n, while it is easier to prove the statement when n is odd, or when n is even,
because in each of these cases we have some additional information about
n, that can be used in the proof.
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3.4.2 Proof by contradiction

The idea of this proof method is to assume that the theorem is not true,
and then show that this implies some false statement (a contradiction). This
false statement could for example be 0 = 1, or any other statement that we
know is false. We give one example of a proof using this method.

Theorem 27. There are infinitely many prime numbers.

Proof. To prove this, we shall assume that the theorem is not true, and
arrive at a contradiction. Assume that the set of prime numbers is a finite
set. Then we can list all the primes as p1, p2, . . . , pr. Let their product be
m. Consider the number

n = p1p2 · · · pr + 1

that is, the number m + 1. This number is clearly greater than each of the
primes pi, so it can not be prime. Hence it is composite. Take a prime
p which divides n. This prime also divides m, because p is among the
primes p1, p2, . . . , pr. Therefore, p divides n − m, in other words p|1. This
is clearly false, so we have obtained a contradiction. Therefore the theorem
is true.

3.4.3 Proof by induction

This has been explained earlier in these notes.

3.4.4 Some further advice

Here are some further ideas that might be helpful if you try to prove some-
thing.

• Try to find out what the theorem says in particular cases, in order to
understand why it must be true in general.

• Make sure that you know the definitions of the concepts involved in
the statement of the theorem.

• Can you reformulate the theorem? For example, if you are asked to
prove something about divisibility or congruences, you may use all of
the five equivalent statements on page 28.

• Try to find a counterexample to the theorem, that is an example which
shows the theorem to be false. If the theorem is true, this will not be
possible, but by trying you will develop a better understanding of why
the theorem is true, and perhaps also find a proof of the theorem.

• Try to think about related theorems that you know are true - can you
use any of them?
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3.5 Exercises

Identify the hypotheses and conclusions in the following statements. (You
don’t have to prove the theorems.)
E219 If x and y are positive real numbers, then the inequality

x

y
+

y

x
≥ 2

holds.
E220 For any positive integer n, the sum of the integers 1, 2, 3, . . . n is equal
to n(n+1)

2 .
E221 If n > 2 is an integer, then there are no positive integers x, y and z,
such that xn + yn = zn.
E222 Let m be an integer. Then m2 + m + 1 is an odd number.

3.6 Problems

Here are some theorems with proofs, but the proofs are not correct! For
each proof, identify the mistake made.
P22. Theorem:

If m is an even integer, then m2 + 2m is also even.

Proof. Since m2 + 2m is even and 2m is always even, the number m2 must
also be even. Therefore m must be even.

P23. Theorem:

For every positive integer n, the number n3 − n is divisible by 3.

Proof. We consider different possible cases of remainder when n is divided
by 3.
Case 1: n ≡ 1 (mod 3).
Raising both sides of this congruence to 3, we get

n3 ≡ 1 (mod 3)

Subtract the first congruence from the second. This gives

n3 − n ≡ 0 (mod 3)

so the theorem is true in this case.
Case 2: n ≡ 2 (mod 3).
Again, we raise both sides of this congruence to 3, to get

n3 ≡ 8 (mod 3)

Subtracting the first congruence from the second gives

n3 − n ≡ 6 (mod 3)

so the theorem is true also in this case, since 6 ≡ 0 (mod 3). This completes
the proof.
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P24. Theorem:

A positive integer n is a prime number if and only if the following congruence
holds:

(n − 1)! ≡ −1 (mod n)

(Recall that k! = 1 · 2 · 3 · · · k.)

Proof. Suppose that the given congruence holds. We want to show that n
is prime. Let d be a positive divisor of n such that d < n. Then d is among
the numbers 1, 2, . . . , (n− 1). Therefore d divides n and d divides (n− 1)!.
By the congruence, −1 is a linear combination of n and (n−1)!, so d divides
−1. Since d is positive, d must be equal to 1. This argument shows that n
has no positive divisors except 1 and n itself. So n is prime.

P25. Theorem:

If x2 ≡ 3 (mod 6), then x ≡ 3 (mod 6).

Proof. If x2 ≡ 3 (mod 6), then because 3 ≡ 9 (mod 6), we also have

x2 ≡ 9 (mod 6)

Raise both sides of this congruence to 1
2 . This gives

x ≡ 3 (mod 6)

which completes the proof.

3.7 Answers and solutions

E219

The hypothesis is

“x and y are positive real numbers.”

The conclusion is

“The inequality
x

y
+

y

x
≥ 2

holds.”

E220

Hypothesis: “ n is a positive integer”.
Conclusion:

1 + 2 + . . . + n =
n(n + 1)

2

E221

Hypothesis:
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n is an integer and n > 2.

Conclusion:

There are no positive integers x, y and z, such that xn +yn = zn

E222

Hypothesis:

m is an integer.

Conclusion:

m2 + m + 1 is odd.

P22

We are supposed to start with the hypothesis and from there prove the
conclusion. The proof given starts with the conclusion and proves the hy-
pothesis, which is completely wrong.
P23

If we prove something by cases, we must consider all possible cases. In the
given situation, we should consider the cases of remainder 0, 1, and 2. The
proof given only covers the cases of remainder 1 and 2. It would be correct
if we added a proof for the case n ≡ 0 (mod 3).
P24

This is an “if and only if” theorem. This means that we must prove two
things: That Statement 1 implies Statement 2 and the other way around.
The given proof proves that if the congruence holds, then n is prime. There
should also be a proof showing that if n is prime, then the congruence holds.
P25

We are allowed to raise both sides of a congruence to a positive integer, but
we cannot raise both sides to 1

2 , or take square roots. To see why, let x = 3.
Then x2 ≡ 4 (mod 5), but it is NOT true that

x ≡ 2 (mod 5)
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4 Application: RSA cryptography

There are many interesting applications of number theory and abstract al-
gebra, especially in computer-related subjects. We shall look closer at one
famous application to cryptography.

4.1 The problem of secure communication

Suppose that two persons want to communicate with each other, and they
want to protect their communication from being overheard by a third party.
This could for example be any of the following situations:

• I want to buy a book at the online bookshop Amazon. To do this, I
send them my credit card number through the Internet, so that they
can deduct the correct amount of money from my bank account. A
skilled hacker can easily interrupt the communication, get hold of my
credit card number, and use it to take all the money in my account.

• The American CIA agent John MacAgent has infiltrated the North
Korean military, and wants to send some secret information back to
his colleagues in the US. If someone can interrupt and understand his
message, he will immediately be killed by the North Koreans.

• Sarah is deeply in love with Otieno, but her parents thinks she is too
young to have a boyfriend. So Sarah needs to send secret messages
to Otieno that her parents cannot understand, even if they manage to
find one of the messages.

• The researchers at the company Amazing Machines Ltd has come up
with an idea for a machine that could produce large amounts of elec-
tricity very cheaply. They want to discuss these ideas through email
with some leading physicists in Japan, but if someone else manages to
interrupt the email communication, they could steal the idea, and the
company could lose millions of dollars.

So how can these problems be solved? How can these people communicate
in a safe way? These kinds of problems are investigated in the field of
cryptography.
The simplest way of solving the problem is to agree on some kind of encoding
scheme. For example, Sarah and Otieno could agree that in their letters,
every A means B, every B means C, every C means D etc. In this case,
Otieno could for example send a letter with the message

H KNUD XNT

and Sarah would be very happy, and write back:

H KNUD XNT SNN, RVDDSHD!
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If her mother found the piece of paper with these letters, she would not
understand, and Sarah could probably convince her that this is just the
password for her webmail.
There are many other, much more complicated, ways of encoding messages
(any such method is called an encoding scheme) so that they are not easily
readable to others. However, there are two possible problems with all of
these methods.

• Problem 1: If the code is not complicated enough, it could easily be
cracked by someone with a computer (perhaps Sarah’s mother has
computer programming as a hobby. . . scary!)

• Problem 2: Suppose that Sarah’s father gets hold of the first let-
ter, where they write down which encoding scheme to use! Then he
would be able to understand every subsequent letter he can find, with
catastrophic consequences!

The first problem can perhaps be solved by making the encoding complicated
enough, but the second is a major problem! If for example my computer
system agrees with the Amazon website on how to encode the credit card
number, and someone gets hold of this information, then they will be able
to read my credit card number even if it is encoded!
This problem can actually be overcome, by using something called RSA

cryptography.

4.2 Factoring large numbers

One of the ideas behind the RSA cryptography is that it is very hard to
factor large integers, even if you use a computer. You have learnt how to
factor small numbers, but how would you find the prime factorization of an
integer n with 200 digits? Of course, you could start by checking the primes
2, 3, 5, 7 and so on, to see if any of them divides the large number. However,
such a number is so large, that you would become old and probably die
before you have checked all primes up to

√
n, even if you used a computer.

I mentioned earlier that if you can find the factorization of the number

740375634795617128280467960974295731425931888892312890849362326389

727650340282662768919964196251178439958943305021275853701189680982

867331732731089309005525051168770632990723963807867100860969625379

34650563796359

then you would be awarded a sum of US$ 30,000. Such a prize exists to
encourage research in this area, because it has an enormous impact on the
millions of messages and financial transations that take place every day
through the Internet and other communication channels.
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4.3 Any message can be expressed in terms of integers

It is easy to transform any message written with letters to a message written
in integers. We could use any of the common methods used in computers,
such as ASCII, Unicode and so on. In this course, we will simply write 1
instead of A, 2, instead of B, and so on, up to 26 instead of Z. We will also
write 0 instead of an empty space. So we could send the numbers

8 9 0 20 8 5 18 5

instead of the message “HI THERE”.

4.4 The RSA Cryptosystem

Suppose that I want to be able to receive secret messages from other people.
The fundamental idea is the following. I find a “one-way function”, call it
E, such that everyone can compute E, but only I can compute the inverse
of E. Then anyone can send me a secret message x, by computing E(x),
and sending this value to me. Since I am the only one who can compute the
inverse of E, I and no-one else can retrieve x.

4.4.1 Creating a one-way function

This is how I create a one-way function E.

1. I pick two large primes p and q, and I put n = pq.

2. I compute ϕ(n) = (p − 1)(q − 1)

3. I choose an integer e which is coprime to φ(n), and which satisfies
1 < e < φ(n).

4. I find an integer d such that ed ≡ 1 (mod ϕ(n))

5. I define a function by

E : Zn → Zn

x 7→ xe

6. I make the numbers n and e available to everyone, so that anyone can
compute E.

As we will prove, the inverse of E is the function x 7→ xd, so I can easily
compute the inverse, since I know d. Although everyone knows the number
n and the number e, note the following:

• It is HARD for anyone else to factor n, i.e. to find p and q.
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• It is HARD for anyone else to compute ϕ(n), since they don’t know
the factorization of n.

• It is IMPOSSIBLE for anyone to find d, unless they know ϕ(n).

In these points, the word HARD means that it takes an enormous amount
of time - so in practice it is impossible. Of course, we assume that p and q
are very large, otherwise it would be easy to factor n, and anyone could find
d.

Theorem 28. The inverse of E is the function x 7→ xd.

Proof. We must prove that xed ≡ x (mod n), in other words, that n divides
(xed − x). Since n = pq, it is enough to show that p and q both divide
(xed − x). Consider first the case of p. If p divides x, then clearly p also
divides (xed − x). If p does not divide x, then Euler’s theorem says

xp−1 ≡ 1 (mod p) (2)

Since (p − 1) divides ϕ(n), and ϕ(n) divides (ed − 1), we see that (p − 1)
divides (ed − 1). In other words, there is an integer b such that

b(p − 1) = ed − 1

Raise both sides of the congruence (2) to b. We get

xed−1 ≡ 1 (mod p)

and multiplying both sides by x gives the desired congruence. We can use
exactly the same argument for q, and conclude that xed ≡ x (mod n).

4.4.2 How someone sends me a message

Suppose that Arnold Schwarzenegger wants to send me a message. He writes
the message as a sequence of integers m1,m2, . . . as explained above. He then
computes the numbers E(m1), E(m2), . . . and sends these numbers to me.
Even if someone interrupts the message, he can not compute the integers
mi, because he does not know the number d.

4.4.3 How I decrypt a message I receive

I receive the numbers E(m1), E(m2), . . . from Arnold. I can then compute

m1 = E(m1)
d

m2 = E(m2)
d

and so on. Then I translate these numbers into letters, and reads the mes-
sage.
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4.5 An example

Let us take an example. First I create a one-way function E.

1. I choose the primes p = 23 and q = 11. Of course, these are far to
small to give an effective encryption for real life applications, but it
will provide us with an example that is easy to follow. We get n = 253

2. I compute ϕ(253) = 22 · 10 = 220

3. I must choose an integer e which is coprime to 220, and which satisfies
1 < e < 220. I choose e = 13

4. I find an integer d such that 13d ≡ 1 (mod 220). I can take d = 17.
(See section 4.6 for more explanation on how to find d.)

5. I make the numbers n = 253 and e = 13 available to everyone, so that
anyone can compute E.

If n had been very large, no-one would be able to factor n, or find ϕ(n), or
find d.
Arnold now wants to send me the message “YEAH”. He knows n and e.
The message is written as a sequence of numbers as

25 5 1 8

Arnold now computes (remember that we use arithmetic mod 253).

E(25) = 25e = 2513 = 27

E(5) = 15e = 1513 = 136

E(1) = 1e = 113 = 1

E(8) = 8e = 813 = 248

and sends me the sequence

27 136 1 248

When I receive this sequence, I compute (raising each number to d)

2717 = 25

13617 = 5

117 = 1

24817 = 8

and I translate these numbers into the message “YEAH”.
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4.6 More about linear combinations

Given e and m, how do find an integer d such that ed ≡ 1 (mod m)? Well,
there are several ways. You could try to put d = 1, then d = 2, then d = 3
and so on, and for each d, check whether ed ≡ 1 (mod m), until you find a
value of d that satisfies this congruence. A faster way is to check the num-
bers m + 1, 2m + 1, 3m + 1, etc until you find a number which is divisible
by e. Divide this number by e to find d.

There is an even more effective (but also more complicated) method,
which uses the Euclidean algorithm. To do this, we must learn how to ex-
press the integer 1 as a linear combination of two coprime integers. Knowing
this, we can find integers x and y such that

1 = xe + ym

and then we can take d = x. How do we find the integers x and y? Answer:
we can actually use the Euclidean algorithm. We show two examples below
to illustrate the method. The steps are as follows:

1. Go through Euclid’s algorithm. Whenver you have computed mi, write
out the equation

mi−2 = q · mi−1 + mi

2. Work your way backwards through the steps of the Euclidean algo-
rithm to express 1 as a linear combination xe+ ym of e and m. When
doing this, you use the equations

mi = mi−2 − q · mi−1

3. Check your answer (i.e. check that 1 = xe + ym), so that you have
not made a mistake in the calculations

Example 50. Write 1 as a linear combination of 7 and 18.
We first go through Euclid’s algorithm:

m1 = 18

m2 = 7

m3 = r(18, 7) = 4 so 18 = 2 · 7 + 4

m4 = r(7, 4) = 3 so 7 = 1 · 4 + 3

m5 = r(4, 3) = 1 so 4 = 1 · 3 + 1

m6 = r(3, 1) = 0

Now we can use these steps to express 1 as a linear combination of 7 and
18, as follows:

1 = 4 − 3 = 4 − (7 − 4) = 2 · 4 − 7 = 2 · (18 − 2 · 7) − 7 = 2 · 18 − 5 · 7
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Example 51. In the RSA example above, we wanted to find an integer d
such that

13d ≡ 1 (mod 220)

We first express 1 as
1 = 13x + 220y

using the Euclidean algorithm:

m1 = 220

m2 = 13

m3 = r(220, 13) = 12 so 220 = 16 · 13 + 12

m4 = r(13, 12) = 1 so 13 = 1 · 12 + 1

m5 = r(12, 1) = 0

So using back-substitution we get

1 = 13 − 12 = 13 − (220 − 16 · 13) = 17 · 13 − 1 · 220

so we can take x = 17, y = −1. As explained, we can now take d = 17.
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Information on the exam

In some previous year the exam was almost completely focused on group
theory. This will NOT be the case this year. The questions on the exam
will cover exactly the contents of these lecture notes. So if something is
treated in these printed lecture notes, it can appear on the exam. However,
the part on RSA cryptography (the whole of Section 4) will NOT be on the
exam.

On the exam, there will be five questions. You will be asked to answer
the first question (30 marks) and two of the remaining questions (20 marks
each). Thus the total number of marks is 70. The first question will be fairly
easy, if you have prepared properly for the exam. The other four questions
will be

• Questions similar to the Problems in these notes

• Questions asking you to prove theorems that are proved in these notes.

As I said in the lectures, the last part of these notes (Group theory) will
be covered after the Christmas break, in lectures by Mr James Nkuubi. This
will also be on the exam.

I wish you all the best for the examinations.
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5 Group theory

This section is an introduction to abstract algebra. This is a very useful
and important subject for those of you who will continue to study pure
mathematics.

5.1 Binary operations

5.1.1 Definition and examples

Throughout mathematics, we encounter the following situation: We have a
set S, and there is a rule that combines two elements in the set to produce
a new element. Let us look at a number of examples:

Example 52. One of the simplest and most well-known examples is perhaps
the following. We consider the set Z and the operation of addition. Using
this operation, the numbers 2 and 5 can be combined to give the number 7;
the numbers 8 and 3 can be combined to give the number 11, and so on.

Example 53. We could also take the same set Z, and consider the operation
of multiplication, or the operation of subtraction.

Example 54. To take a different example, consider the set M2×2 of 2 × 2
matrices, with real entries. Two such matrices can be multiplied to produce
a new 2 × 2 matrix.

We make the following definition:

Definition 18. A binary operation on a set S is a function from S × S to
S.

(Recall that S × S is the set of all ordered pairs of elements of S.)

Example 55. The operation of addition is a binary operation on R. It is
also a binary operation on N, and also on the set of complex numbers C. It
is also a binary operation on the set P2 of polynomials of degree at most 2.
In fact, addition is a binary operation on any vector space.

Example 56. The operation of multiplication is a binary operation on Z.
It is also a binary operation on N, and on R, and on C.

Example 57. Consider the set of positive real numbers, which we denote
by R+. The operation of division is a binary operation on this set.

Example 58. Let A be any set, and let S be the set of all functions from
A to A. Given two elements f and g of S, we can consider the composition
f ◦ g. Since this is again an element of S, we see that the operation of
composition is a binary operation on S.
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Example 59. We can define our own binary operations. For example, we
can define a binary operations on the set Z be the formula

a ∗ b = ab + 2

With this definition, we can compute that 4 ∗ 3 = 14 and 5 ∗ (−2) = −8.

Example 60. On the set Z, we can define a binary operation by

a ∗ b = min(a, b)

(this means the smallest of a and b, or if they are equal, the common value
of a and b.) We can compute

5 ∗ 2 = 2

10 ∗ 10 = 10

(−1) ∗ 5 = −1

75 ∗ 95 = 75

Example 61. Another possible binary operation on Z is the following:

a ∗ b = b

In this case we can compute

12 ∗ 8 = 8

10 ∗ 10 = 10

(−1) ∗ 5 = 5

75 ∗ 95 = 95

Example 62. Define a binary operation on Z by

a ∗ b = 3

We can compute

5 ∗ 2 = 3

10 ∗ 10 = 3

(−1) ∗ (−8) = 3

75 ∗ 95 = 3

Example 63. We can define a binary operation on the set of points in the
plane R2 as follows: If P and Q are two points, we let P ∗Q be the midpoint
of the segment PQ.

Example 64. On the ring Zn defined earlier in the course, we have two
binary operations: multiplication mod n and addition mod n.
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5.1.2 Examples that are NOT binary operations

There are many examples that look like binary operations but still fail to fit
in the definition above. It is important that you understand the following
examples, and why they are NOT binary operations2.

Example 65. Consider the operation of subtraction on the set N of natural
numbers. This is NOT a binary operation, because when you take one
natural number minus another one, you don’t always get a natural number.
For example, 4 − 9 is not a natural number, because it is negative.
The problem with this operation is that although it is defined for every
element of N × N, the result does not always lie in N. Remember that a
binary operation on N is a function from N × N to N.

Example 66. Consider the set of real numbers R, and the operation of
division. This is NOT a binary operation, because it is not defined for every
ordered pair in R × R. (You cannot divide by zero).

Example 67. Consider the set of all matrices with real entries (of any size).
The operation of addition is NOT a binary operation on this set, because
you can not always add two matrices (it only works if they are of the same
size).

Example 68. Consider again the set Z. If we say that “a∗b is some number
larger than both a and b”, we have NOT defined a binary operation, because
the definition is not precise. (What is the value of 5 ∗ 4?)

5.1.3 Exercises

Do the following rules define a binary operation on the set Z?
E223 a ∗ b = a − b
E224 a ∗ b = a/b
E225 a ∗ b = b2

E226 a ∗ b = a+b
2

E227 a ∗ b = −1000

5.1.4 Properties that binary operations can have

In order to study binary operations in a systematic way, we introduce some
definitions. In each definition, we consider a binary operation ∗ on a set S.

Definition 19. The binary operation ∗ is called commutative if

a ∗ b = b ∗ a

for all a and b in S.
2I might have made a terrible mistake in the lecture. If I told you that a ∗ b = ab

2

defines a binary operation on Z, I lied to you, because this expression is not always an

integer. It should be R instead of Z.
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Definition 20. The binary operation ∗ is called associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c)

for all a, b, c in S.

Definition 21. An identity element for the binary operation ∗ is an element
e ∈ S such that

a ∗ e = a and e ∗ a = a

for all a in S.

Definition 22. Let ∗ be a binary operation with an identity element e. An
inverse to an element b ∈ S is an element x ∈ S with the property that

b ∗ x = e and x ∗ b = e

Let us take some examples.

Example 69. Consider the operation + on the set Z. This operation is
commutative and associative. It has an identity element, namely 0. Also,
every element has an inverse: the inverse of n is the number −n.

Example 70. Consider the operation of multiplication on the set Z. This
operation is commutative and associative. The operation also has an identity
element, namely 1. However, every element does NOT have an inverse. In
fact only the elements 1 and −1 have inverses. (1 is the inverse of 1, and
−1 is the inverse of −1.)

Example 71. Consider the operation of multiplication on the set R. It is
commutative, associative and has an identity element. Every element except
0 has an inverse. (The inverse of a is 1

a
.)

Example 72. Consider the operation of matrix multiplication on the set
M2×2. This binary operation is associative, but NOT commutative. There is
an identity element (the identity matrix). Not all elements have an inverse:
only the invertible matrices do.

Example 73. Consider the operation on Z given by

a ∗ b = ab − 1

Is it associative? To check, we compute

a ∗ (b ∗ c) = a ∗ (bc − 1) = abc − a − 1

and
(a ∗ b) ∗ c = (ab − 1) ∗ c = abc − c − 1
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so the operation is NOT associative, since these two expressions are not in
general equal.
Is the operation commutative? Yes, because

ab − 1 = ba − 1

for all a and b in Z.
Is there an identity element? This would be an element e such that

ea − 1 = a

for all a ∈ Z. This equation can be rewritten as

e =
a + 1

a

which clearly cannot be satisfied for all a at once. (In fact, it cannot be
satisfied at all when a = 0.)
Since the operation does not have an identity element, it doesn’t make any
sense to ask about if any element has an inverse, since the concept of inverse
cannot be defined.

Example 74. We consider the binary operation on Z given by

a ∗ b = min(a, b)

This operation is clearly commutative. It is also associative because (a∗b)∗c
and a∗(b∗c) are both equal to the smallest of a, b and c. Does the operation
have an identity element? Suppose that e is an identity element. Then we
would have

min(a, e) = a

for all elements a. In other words, we would have e ≥ a for every integer
a. Clearly there is no such integer e, so there is no identity element for this
operation.

Example 75. We define a binary operation on R by

a ∗ b =
ab

3

This is clearly commutative. Is it associative? We compute

a ∗ (b ∗ c) = a ∗ (
bc

3
) =

abc

9

and

(a ∗ b) ∗ c = (
ab

3
) ∗ c =

abc

9
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so the operation is associative.
Is there an identity element? This would be an element e such that

ae

3
= a

for all a ∈ R. We see that e = 3 satisfies this condition, so 3 is an identity
element.
Which elements have an inverse? An inverse to the element a is an element
x such that

ax

3
= 3

in other words, such that ax = 9. Hence every element except 0 has an
inverse: the inverse of a is 9

a
.

5.1.5 Closedness

Definition 23. Let S be a set with a binary operation ∗, and let T be a
subset of S. We sat that T is closed under the binary operation, if whenever
t1 and t2 are in T , then t1 ∗ t2 is also in T .

Example 76. Consider the set R with the binary operation of addition.
The subset Z is closed under addition, because the sum of two integers is
always an integer. The subset Z+ is also closed under addition, because the
sum of two positive integers is always a positive integer. However, the subset
P (the set of all prime numbers) is NOT closed under addition, because the
sum of two primes is not always a prime.

Example 77. Consider the set M2×2, with the binary operation of matrix
multiplication. The set of invertible matrices is closed under this operation,
because the product of two invertible matrices is again invertible.

5.1.6 Exercises

On the set Z, we consider the binary operation a ∗ b = a − b.
E228 Is this operation commutative?
E229 Is this operation associative?
E230 Does the operation have an identity element?
E231 If the operation has an identity element, which elements have an
inverse?
E232 Is the set of even integers closed under this operation?
E233 Is the set of positive integers closed under this operation?
E234 Is the set of prime numbers closed under this operation?
Consider the binary operation in Example 59.
E235 Is this operation commutative?
E236 Is this operation associative?
E237 Does the operation have an identity element?
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E238 If the operation has an identity element, which elements have an
inverse?
E239 Is the set of even integers closed under this operation?
E240 Is the set of positive integers closed under this operation?
E241 Is the set of prime numbers closed under this operation?
Consider the binary operation in Example 61.
E242 Is this operation commutative?
E243 Is this operation associative?
E244 Does the operation have an identity element?
E245 If the operation has an identity element, which elements have an
inverse?
E246 Is the set of even integers closed under this operation?
E247 Is the set of positive integers closed under this operation?
E248 Is the set of prime numbers closed under this operation?
Consider the binary operation in Example 62.
E249 Is this operation commutative?
E250 Is this operation associative?
E251 Does the operation have an identity element?
E252 If the operation has an identity element, which elements have an
inverse?
E253 Is the set of even integers closed under this operation?
E254 Is the set of positive integers closed under this operation?
E255 Is the set of prime numbers closed under this operation?

5.1.7 Problems

Consider the binary operation in Example 63.
P26 Is this operation commutative?
P27 Is this operation associative?
P28 Does the operation have an identity element?
P29 If the operation has an identity element, which elements have an in-
verse?
P30 Let S be the set of points on the line 2x + y = 1. Is this set closed
under the operation?
P31 Is the set of points with integer coordinates closed under this opera-
tion?
P32 Is the set of points (x, y) such that x > 0 closed under this operation?
Consider the binary operation in Example 58.
P33 Is this operation commutative?
P34 Is this operation associative?
P35 Does the operation have an identity element?
P36 If the operation has an identity element, which elements have an in-
verse?
P37 Is the set of injective functions closed under this operation?
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P38 Is the set of bijective functions closed under this operation?

5.2 Groups: definition and examples

Definition 24. A set S with a binary operation ∗ is called a group if the
following conditions are satisfied:

• The operation ∗ is associative

• The operation ∗ has an identity element

• Every element of S has an inverse

Definition 25. A group is called abelian if the group operation is commu-
tative.

If the group operation is addition, we speak of an additive group (this
can be addition of numbers, of matrices, of functions, of vectors, etc). If the
group operation is some kind of multiplication, we speak of a multiplicative

group. An additive group is always abelian (this is an unwritten agreement
between all mathematicians) but a multiplicative group can be either abelian
or nonabelian, depending on the situation.

5.2.1 Examples of groups

Example 78. The set Z, with the operation of addition, is a group. Same
is true for the set R and the set C. However, the set N is NOT a group
under addition, because not every element has an inverse in N.

Example 79. The set Zn is a group, with the operation of addition mod n.

Example 80. The set Z∗

n is a group, with the operation of multiplication
mod n.

Example 81. Let A be any set, and let G be the set of bijective functions
from A to A. Then G is a group under the operation of composition. If
A is a finite set with n elements, the resulting group G is called the sym-

metric group Sn. A bijective function from a finite set to itself is called a
permutation. A group in which the elements are permutations is called a
permutation group.

Example 82. We write GL2(R) for the set of all invertible 2 × 2 matrices
with real entries. This set is a group under matrix multiplication. The
letters GL is an abbreviation of “general linear group”.

Example 83. We write SL2(R) for the set of all 2 × 2 matrices with de-
terminant equal to 1. This set is also a group under matrix multiplication.
The letters SL is an abbreviation of “special linear group”.
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Example 84. The last two examples are examples of so called Lie groups

(pronounced Lee groups). These groups are very interesting objects, and the
focus of much current research. We can also define GLn(R), as the set of all
invertible n × n matrices, and SLn(R) as the set of all n × n matrices with
determinant 1, and there are also many other similar groups of matrices,
with real or complex entries.

Example 85. Given a geometric object, for example a cube or a rectangular
card, we can study the group of symmetries of the object.

Example 86. Given any group, we can construct many new groups from
it. For example, there is the center of a group, the automorphism group of
a group, and the direct product of a group with itself.

5.2.2 Exercises

E256 Check that the set Z is a group under addition.
E257 Check that the set of positive real numbers is a group under multipli-
cation.
E258 Check that the set GL2(R) is a group under matrix multiplication.
E259 Is the set Z a group under the binary operation a ∗ b = a + b + 1?
E260 Is the set M2×2 a group under matrix addition?
E261 Is the set Z a group under multiplication?

5.3 Answers and solutions

E223 Yes. E224 No. E225 Yes. E226 No. E227 Yes.
E228 No. E229 No. E230 No. There are two conditions on an identity
element. The number 0 satisfies one condition but not the other. E232 Yes.
E233 No. E234 No.
E235 Yes. E236 No. E237 No. E239 Yes. E240 Yes. E241 No.
E242 No. E243 Yes. E244. No. E246 Yes. E247 Yes. E248 Yes.
E249 Yes. E250 Yes. E251 No. E253 No. E254 Yes. E255 Yes.
E256 The sum of two integers is an integer, so addition is a binary opera-
tion on Z. Addition of integers is associative. The number 0 is the identity
element. The inverse of n is −n.
E257 The product of two positive real numbers is a positive real number,
so we have a binary operation. Multiplication of real numbers is associative.
The number 1 is the identity element. The inverse of a is 1

a
.

E258 The product of two invertible matrices is invertible, so we have a bi-
nary operation. Matrix multiplication is associative. The identity matrix is
the identity element for matrix multiplication. By definition, every invert-
ible matrix has an inverse.
E259 Yes. The operation is associative. The identity element is −1. The
inverse of n is (−2 − n).
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E260 Yes. The operation is associative. The identity element is the zero
matrix, and the inverse of a matrix A is the matrix −A.
E261 No. The operation is associative and the number 1 is the identity
element, but not every element has an inverse.
P26 Yes. P27 No. P28 No.
P30 Yes. If you take two points P,Q on a line, the midpoint of PQ is also
on that line.
P31 No. Take for example the points (0, 0) and (1, 1).
P32 Yes.
P33 No. P34 Yes. P35 Yes. P36 The bijective functions. P37 Yes. (See
Problem 4). P38 Yes. The composite of two bijective functions is also
bijective.

5.4 Some basic group theory

This part of the course is covered in the lectures by Mr Nkuubi, so I refer
to his lectures for the details. This part of the course will also be on the
exam, although it is not in these notes! You are expected to understand the
definitions and basic properties of the following concepts:

• Order of an element in a group

• Order of a group

• Homomorphism

• Isomorphism

• Kernel of a homomorphism

• Image of a homomorphism

• Subgroup

• The cyclic subgroup generated by an element

• Coset

I promised earlier in the course that I would prove Euler’s theorem, using
a general theorem from group theory. Let me give this proof. The general
theorem is the following:

Theorem 29 (Lagrange’s theorem). Let G be a finite group, and let H be
a subgroup of G. Then the order of H divides the order of G.

An immediate consequence of Lagrange’s theorem is the following:

Corollary 2. Let G be a finite group of order g. Let e be the identity
element of G. Then for every element a of G, we have ag = e.
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Proof. Let f be the order of the element a. This is also the order of the
cyclic subgroup generated by a. By Lagrange’s theorem, f divides g, so
g = nf for some positive integer n. We have

af = e

by definition of f . Raising both sides to n gives

ag = e

which completes the proof.

We now recall the formulation of Euler’s theorem:
Theorem: Let n ≥ 2 be an integer, and let a be a positive integer coprime
to n. Then the following congruence holds:

aϕ(n) ≡ 1 (mod n)

Proof. Let r be the remainder when a is divided by n. Since a ≡ r (mod n),
we also have that

aϕ(n) ≡ rϕ(n)

To prove the theorem, it is sufficient to prove that

rϕ(n) = 1

in the ring Zn. The number a is coprime to n, so r is also coprime to n.
Therefore r is in the group Z∗

n. The order of this group is ϕ(n), so be the
Corollary above, we can conclude that

rϕ(n) = 1

in the group Z∗

n, and hence also in the ring Zn.

THE COURSE NOTES END HERE. ALL THE BEST FOR THE EXAM!
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